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The evolution of pore pressure fields around standard and ball
penetrometers: influence of penetration rate
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SUMMARY

Rate effects are examined in the steady pore pressure distribution induced as a result of penetration of
standard and ball penetrometers. The incompressible flow field, which develops around the penetrometer
is used to define the approximate soil velocity field local to the penetrometer tip. This prescribes the
Lagrangian framework for the migration of the fluid saturated porous medium, defining the advection of
induced pore pressures relative to the pressure-monitoring locations present on the probe face. In two
separate approaches, different source functions are used to define the undrained pore fluid pressures devel-
oped either (i) on the face of the penetrometer or (ii) in the material comprising the failure zone surrounding
the penetrometer tip. In the first, the sources applied at the tip face balance the volume of fluid mobilized by
the piston displacement of the advancing penetrometer. Alternately, a fluid source distribution is evaluated
from plasticity solutions and distributed throughout the tip process zone: for a standard penetrometer, the
solution is for the expansion of a spherical cavity, and for the ball penetrometer, the solution is an elastic
distribution of stresses conditioned by the limit load embedded within an infinite medium. For the standard
penetrometer, the transition from drained to undrained behavior occurs over about two orders of magnitude
in penetration rate for pore pressures recorded at the tip (U1) and about two-and-a-half orders of magnitude
for the shoulder (U2). This response is strongly influenced by the rigidity of the soil and slightly influenced
by the model linking induced total stresses to pore pressures. For the ball penetrometer, the transition
from drained to undrained behavior also transits two-and-a-half orders of magnitude in penetration rate,
although it is offset to higher dimensionless penetration rates than for standard penetration. Copyright ©
2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The cone penetration test (uCPT) is a widely utilized tool for characterizing soils and their geotechnical
properties in situ. The recovered data can be used to assess the nature and sequence of the subsurface
strata, together with their mechanical and transport properties. The current standard for the uCPT test
involves the steady penetration at 2 cm/s by a 35.7mm diameter cone (10-cm2 cross-sectional area),
with a 60� inter-apical angle, and the collection of continuous profiles of end-bearing stress, sleeve-
frictional stress, and induced pore fluid pressure. Pore pressures are typically measured at the cone
tip, the cone shoulder, or along the shaft, and these measurements are known to differ, because of
both material nonlinearities and the physical geometry of the penetrometer and the advecting soil.
Together with the end-bearing and sleeve frictional stresses, pore pressures are used to determine
mechanical and transport properties of the soil [1].
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2136 D. ELSWORTH
Empirical correlations have been developed for qualitatively defining soil types [2] along with
analytical methods to understand the mechanics of the processes involved with penetrometer
insertion, which primarily involve the strain and pressure fields that develop around the cone during
advancement. These analytical methods can be divided into two broad classes of models; static and
migrating. Static models mainly relate to cavity expansion results for spherical [3] and cylindrical
[4] geometries. These models have been shown to be capable of incorporating frictional behavior [5]
and shear-induced pore pressures [6]. They have been applied to define the initial undrained
distributions of pore pressure and their subsequent dissipation [4, 6, 7] and have been used in
determining the hydraulic diffusivity of soils. Although a limitation exists for cavity expansion
models to reproduce pore-pressure fields that result at the cone tip, the more pressing limitation is
the inability to accommodate the precise tip geometry of the penetrometer and the role of rate-
effects on the resulting response. Pore-pressure fields that develop around a steady penetrating cone
have been shown to be strongly dependent on the shape of the cone tip and the degree of taper [8].
Thus, the locations of the pressure-sensing element inlets are important [9]. These limitations on
using cavity expansion methods to represent these facets make their use in data reduction problematic.

Migrating models are those that accommodate the non-inertial dynamic effects of the moving
penetrometer tip. Important criteria are as follows: (i) accurately determining the evolving tip local
strain field, and (ii) accommodating the partial drainage conditions by allowing simultaneous pore-
pressure generation and dissipation. Different models have been shown to meet these requirements to
varying degrees. The tip local strain fields may be determined from considerations of kinematic failure
mechanisms [10, 11] and by considering steady plastic flow [12, 13]. Appropriate pore-pressure
parameters can be used to determine the instantaneous pore-pressure distributions [14, 15]. Strain path
analyses [16] circumvent many of the complexities involved in defining the large strain field, where
slight variations in the evolving strain distribution induced at the tip are considered of secondary
importance to the intense impacts of material nonlinearity. Instead, an approximate solution is sought to
the mechanical problem, neglecting rigorous solution of the equilibrium equations but providing an
evaluation of strain distributions to the applied displacement (or displacement rate) boundary
conditions. This procedure is shown to provide adequate predictions of the distribution of undrained
pore pressure generation [17, 8], adequately incorporating cone geometry effects, and may be applied
equally to complex and relatively straightforward [18] material models.

Dislocation-based methods [19–21] provide an alternative to the strain-path methods and enable
both the undrained and partially drained behaviors to be accommodated, along with simultaneous
fluid pressure generation and dissipation. The main limitations of these models are that general
pseudo-elastic material behavior is used, which negates the development of a true tip local process
zone. Also, the analyses are for moving point dislocations within the poroelastic medium and do not
adequately represent the influence of the tip geometry and its finite size on pressure generation.
Despite these limitations, the penetration induced fluid pressure response evaluated from the
dislocation analysis closely matches the undrained behavior observed [17] and replicated by other
methods [8, 18] and are not restricted to undrained behavior alone.

The following presents a first analysis for conical and ball penetrometers moving within a porous
medium using a Lagrangian representation where evolution of pore pressures local to the tip is
recovered from a solution for undrained failure. This enables the influence of the finite size and true
flow-field around the tip to be accommodated, together with the effects of fluid storage and release
from storage during the initiation and arrest of penetration, including the effects of convective transport.
This analysis supplements previous steady-state characterizations [22], which have proved useful in
recovering profiles of permeability data from peak pore pressure magnitudes measured on-the-fly. This
analysis addresses the anomaly between previously observed and calculated pore pressure magnitudes
using the assumption of an amorphous tip, steady-state pressure buildup, and negligible fluid storage.
2. ANALYSIS OF FLUID PRESSURES IN AN ADVECTING FLOWFIELD

Prior results have represented the evolution of the pore pressure field by injecting an equivalent volume
of fluid into the flowing stream of soil as it moves past the penetrometer tip. This fluid injection rate
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
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PORE PRESSURE FIELDS AROUND MOVING PENETROMETERS 2137
corresponds to the insertion rate of the penetrometer, and the solution can be shown to be equivalent to
models represented by a moving point dislocation [19]. This method has been applied to both
infinitesimal [21] and finite size [23] penetrometers where the distribution of fluid injection around
the boundary is prescribed by the local geometry. In this work, we extend this approach to distribute
the injected volume throughout the tip process zone; the injected fluid volume is defined by the
tip-local failure mechanism. This yields a more accurate representation of the evolving pore
pressure field local to the tip and allows an analysis of penetration rate effects.

2.1. Fluid pressure field

For this distributed source, the evolving pore pressure field may be represented by the governing
equation for fluid flow within an advecting medium [24],

mv
@p

@t
þ mvvi

@p

@xi
� @

@xi

ki
m
@p

@xi
� Q ¼ 0 (1)

where Q is a distributed flux within the body (not a boundary flux), with units of volume injected, per
unit volume, per unit time (i.e. s� 1) and positive for injection into the flow-field. The moving soil–fluid
mixture has a volume compressibility, mv, permeability, ki, local velocity vi in the i-th direction, and
the pore fluid exists at pressure, p, and viscosity, m. The coordinates are xi, and the behavior evolves
over time, t. For the moving reference frame, the distributed flux may be defined by an apparent
volume strain, ev, given by,

Q ¼ Dev
Dt

¼ @ev
@t

þ vi
@ev
@xi

: (2)

This distributed volumetric flux is the fluid volume made available by undrained incremental straining
of the medium, and its redistribution in space is controlled by pressure diffusion. This redistribution is
controlled by Equation (1) through fluid transport modulated by Darcy’s law and through release from
storage modulated via mv, hence, noting that for drained loading under constant total stresses, and
where mv represents the volumetric response as mv= 1/K where K is the drained bulk modulus. Note
that mv in this use is not the constrained compressibility because the medium is free to expand
laterally in the geometry selected. The modulus may be either the virgin compression modulus or
the unload-reload modulus representing recompression to prior conditions, determined by
preference. Thus, the fluid available for redistribution is

ev ¼ 1
K
pu ¼ mvp

u: (3)

Substituting Equation (3) into Equation (2), the result into Equation (1), and non-dimensionalizing by
multiplying by a/U, where a is penetrometer radius and U is penetrometer velocity, yields the
dimensionless expression

@PD

@tD
þ UD

vi
U

� � @PD

@xD
� @

@xD

@PD

@xD
þ QD ¼ 0 (4)

noted in compact form for all dimensions xi and with the steady form (@ ev/@ t= 0) of the source
function, QD, defined as

QD ¼ vi
U

� � @ mvpuð Þ
@xD

¼ vi
U

� � @ Pu
Dð Þ

@xD
: (5)

The remaining terms are of non-dimensional pressure, PD,

PD ¼ ki
m

p� psð Þ
Ua

(6)

non-dimensional penetration rate, UD,
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UD ¼ Ua

Cv
(7)

non-dimensional time, tD,

tD ¼ Cv t

a2
(8)

and for a non-dimensional coordinate system, xD,

xD ¼ xi=a: (9)

The dimensionless pressure is defined in terms of the static pressure, ps, and measured pressure, p, and
the penetrometer velocity v1 =U and with a normalizing length defined by the penetrometer radius, a.
Similarly, nondimensional penetration rate and pressure-diffusive time are conditioned by
consolidation coefficient Cv, which is in turn a function of permeability and coefficient of volume
compressibility as k =Cvmv.

Similarly, the convective boundary conditions to the system may be cast in non-dimensional form,
as

Qb
D ¼ � @PD

@xD
þ UD

vi
U

� �
PD; PD ¼ PDdefined (10)

where Qb
D ¼ qi=U.

Additionally, if the magnitude of the fluid volumetric source term, mvp
u, may be determined, then

the evolving water pressure distribution in the moving reference frame may also be recovered. This
pressure distribution must satisfy two end-member conditions: it must return the initial undrained
prescribed pressure distribution at high penetration rates and must approach zero-induced pressure as
the penetration rate approaches zero (drained loading). An alternate and separate requirement is that
fluid mass must be conserved, and the fluid volume ‘injected’ into the flowing soil mass must be
equivalent to the volume rate of penetrometer insertion.

2.2. Soil flow-field

Separate from the pressure diffusion equation, the overall flow-field of the fluid-saturated solid mixture
must be defined. For this, the motion of the fluid–solid mixture is treated as the transport of a
Newtonian fluid. The momentum balance and continuity equations for the flow of an incompressible
fluid are

rs
@vi
@t

þ rsvi
@vi
@xi

¼ rsg
@xi
@xi

� @P

@xi
þ ms

@

@xi

@vi
@xi

(11)

and

@vi
@xi

¼ 0 (12)

and are applied with the appropriate boundary conditions. The incompressible fluid here represents the
moving soil–fluid mixture and has a mean density of rs and viscosity ms. Importantly, the fluid pressure
of the mixture driving flow is the reduced fluid pressure P ¼ 1

3 s11 þ s22 þ s33ð Þ and is used to
condition flow at the desired velocity past the probe, in the far-field. For typical anticipated
velocities, the convective accelerations and body forces are small in comparison to viscous effects,
and the system may be adequately represented by steady Stokes flow for a non-inertial fluid. Thus,
Equations (11) and (12) become
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(13)

and

@vi
@xi

¼ 0 (14)

or rP= mr 2v and r � v = 0. This yields directly, for arbitrary penetrometer geometries, a flow field
for an incompressible fluid representing the soil-water mixture, which is analogous to that used in
strain path models. The flow is assumed incompressible, although consolidation and local fluid
exchange will occur. Because this model for flow of the soil–water mixture is used only to prescribe
the flow vectors for the migrating consolidation equation (Equation (4)), this effect is anticipated to
be minor.

2.3. Numerical solution

The resulting system of equations is solved in finite element format. The geometry is as shown in
Figure 1 for both tapered and spherical penetrometers. The resulting equations for soil flow are the
finite element representation of the Stokes equations (for Equations (13) and (14)) as the momentum
balance component Z
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and for the continuity requirement as Z
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�
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¼ 0�dV : (16)
(a) (b)

Figure 1. Meshes used for (a) standard and (b) ball penetrometers.
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In this, vectors and matrices are underscored. The shape function vector is
�
b, and the derivatives of

this link nodal pressures P� to pressure gradients P�;i as P�;i ¼ ~a
�
P� and nodal velocities v� to velocity

gradients v�;i through v�;i ¼ �
a v� . The matrix

�
D contains the constitutive relationship in terms of

Newton’s law of viscosity and for the three-dimensional case
�
mT ¼ 111000½ � . For the generation

and transport of pore pressures within the advecting solid–fluid mixture (Equation (4)), the
advection–diffusion equation becomes
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(17)

where
�
v is the vector of local velocities, vi, and the integration is completed over the dimensionless

volume, dVD = dxDdyDdzD. It is important to note that the reduced pressure P that occurs in Equation
(15) is the mean of the stresses in the solid–fluid mixture of the Stokes’ equation. This solution is
used to determine the spatial distributions of soil velocities, vi, around the cone and is solved to
return the desired penetration rate of the cone relative to the mean advection velocity, U, of the soil.
The reduced pressure boundary conditions and viscosities are selected to return this required
outcome. With the velocity field vi known everywhere, then the generation and dissipation of pore
fluid pressures, p, or their dimensionless counterpart, PD, may then be determined from Equation
(17). This solution is de-coupled.

The mesh is defined in the dimensionless coordinate system (xD, rD) and extends to 16 penetrometer-
radii (a) laterally and vertically relative to the mesh-centered penetrometer tips. The mesh is graded
with element size a minimum close to the penetrometer face at ~ a/100 and grades out to a
maximum element size of ~ a at the outer boundaries. For the different geometries, this comprises a
mesh of up to about 6000 triangular elements and 40 000 degrees of freedom for the axisymmetric
problem. Triangular elements are used with quadratic shape functions

�
b applied to both the pressure

and velocity conditions.
The moving soil is represented by Stokes’ flow with slip conditions on the side boundaries

(including the penetrometer faces) and reduced pressure conditions (P) set to a unit differential
between the domain base and top. The ratio of differential pressure to viscosity is adjusted to yield a
mean unit vertical velocity within the far field, which is then scaled by UD across the domain as
input to the Lagrangian consolidation equation (Equation (4)). Note that the reduced pressure
gradient is used to match the bulk motion of the soil–water mixture to the desired insertion rate (U)
of the penetrometer and is merely a scaling parameter. It is not related to the pore pressure, p.

The consolidating soil is represented by zero flux on the sides, null pressure on the base and a
convective condition on the top. Boundary and interior conditions for the standard and ball
penetrometers are prescribed in one of two ways. For the undrained analysis with a distributed
process zone, they are described as an interior volumetric flux QD prescribed according to Equations
(20) and (21) for the standard cone or Equation (29) for the ball penetrometer (as discussed later).
For the partially drained analysis, the boundary condition is prescribed as a surface flux Qb

D

according to Equation (25) for the standard cone and Equation (31) for the ball penetrometer (also
as discussed later).
3. PORE PRESSURE RESPONSE FOR PENETRATION GEOMETRIES

This approach is used to represent the evolution of pore pressures around the tip. The soil–water flow
field is determined from the Newtonian viscous model of Equations (15) and (16). This defines the
velocities of the soil everywhere within the system. We then use the solution for fluid flow within
this advecting medium within Equation (17) to define the pore pressure distribution. This requires
that we define the appropriate fluid source term, QD, or Equation (5) to substitute into Equation (17).
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
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The pore pressure generation and dissipation response for various tip geometries may be
accommodated if the appropriate distributed source may be defined for the particular penetrometer.
In this work, we compare two end-member cases for each of two probe geometries: a standard
conical penetrometer and a ball penetrometer. The end-member cases are for undrained loading,
where a plasticity solution is used to define interior undrained pore pressures and related volume
fluxes, and a partially drained solution where and equivalent fluid injection is applied at the cone tip
face. These examples are examined sequentially in the following.

3.1. Standard conical penetrometer

3.1.1. Undrained solution. The source term to represent the lower bound solution for the expansion
of a spherical cavity may be described as Pu

D ¼ mvpu as [25]

Pu
D ¼ 4

3
mvSu 1þ ln

G

Su

� �� �
� 3
2

1� Af

� �þ 3 ln
a

R

� �� 	
; a < R < Rmax ¼ a G=Suð Þ1=3 (18)

Pu
D ¼ 0; R > Rmax ¼ a G=Suð Þ1=3 (19)

where Su may be a cohesive or pseudo-frictional strength parameter, Af is the Skempton pore pressure
coefficient (B= 1), for pu =BΔs3�AfB(Δs1�Δs3) and the cavity is of radius, a.

The bulk compressibility, mv = 1/K, and drained shear modulus, G, are related asK ¼ 2 1þυð Þ
3 1�2υð ÞG ¼ fG,

leaving f= 4/3 for υ= 0.2 and f = 5/3 for υ = 0.25. Substituting this into Equation (18) and
non-dimensionalizing the length dimensions as r2 = y2 + z2, rD = r/a and RD

2 ¼ xD2 þ rD2 results in

Pu
D ¼ 4

3
1
f

Su
G

1þ ln
G

Su

� �� �
� 3
2

1� Af

� �þ 3 ln
1
RD

� �� 	
; 1 < RD < RD max ¼ G=Suð Þ1=3 (20)

with the pressure null beyond this. Because the pressure at the outermost limit of the plastic zone is finite
(Equation (20)), but null immediately beyond this, this infinite pressure gradient is ameliorated by
setting a smooth transitional distribution of the undrained pressure within the initial portion of the
elastic zone. This distribution is scaled with the exponent n as

Pu
D ¼ Pu

D RD¼RDmaxj � RD max

RD

� �n

; RD > RD max ¼ G=Suð Þ1=3
�

(21)

to give a smooth pressure distribution in the transition across the elastic–plastic interface, so the
derivatives in Equation (5) are both finite and well conditioned. For spherical cavity expansion, the
exponent n = 3 gives continuity of pressure gradient across the boundary and is used here.

3.1.2. Partially drained solution. For an axisymmetric flow system, with the medium moving at
velocity, U, boundary conditions may be defined for the geometry of a blunt penetrometer, where
the fluid is injected through a band around the curved surface of a cylinder of radius, a, and length,
l, at velocity, q. The appropriate non-dimensional flux QD = q/U may be defined as

Qb
D
CPT�Blunt ¼ a

2l
¼ 1

2lD
: (22)

For a standard cone (Figure 2) where the tip is tapered at semi-inter-apical angle θ and the taper
exists over length l, then the injected fluid may be applied over the face of this tapered cone. For a
coordinate system (w, r) centered on the tip, with w positive in the direction of increasing tip taper,
the volume of the tapered tip displaced per unit length of travel is [21]

V ¼ 2p tan2 θUwdw: (23)
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Figure 2. Prescribed tip geometries of (a) standard and (b) ball penetrometers.
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where this volume is applied over the area of the cone surface, the velocity flux is given by q=V/2pa
where a is the radius to the tapered face of the probe, where surface length dS is related to dw as
dw= tan θdS, to yield,

q ¼ U sin θdS (24)

or U sin θ per unit length. This may be non-dimensionalized to give

Qb
D
CPT�Tapered ¼ q

U
¼ sin θ (25)

when applied normal to the tapered surface over the length of the tip lD= 1/tan θ.
The numerical solution for a tapered geometry is compared against the analytical solution for a blunt

penetrometer idealized as a moving point volumetric dislocation in a poroelastic medium [19]. The
resulting pore pressure distribution is given as PD ¼ 1

4RD
exp � 1

2UD RD � xDð Þ
 �
. The geometries of

the two systems are not identical, and the severity of the tip-local pressure gradients around the tip
is a severe test for the numerical model. Nevertheless, the correspondence between numerical and
analytical solutions, as illustrated in Figure 3, is adequate.

3.1.3. Asymptotic pore pressure magnitudes. For the assumptions embedded in each of the undrained
and partially drained solutions, there are asymptotic magnitudes of non-dimensional pore pressure for
idealized geometries. For the standard cone, this is a spherical cavity of radius a [23]. For the cavity
expansion solution, and with Af = 1/3 to represent the elastic case of null pressure generation in
shear, this yields at RD = 1 an undrained pressure of

PD ¼ 4
3
1
f

Su

G
ln G=Suð Þ (26)
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
DOI: 10.1002/nag



Figure 3. Comparison of numerical (dashed) solution for a tapered penetrometer against the analytical solu-
tions (solid) for a moving point dilation [19] representing a blunt penetrometer. Radial solution at xD= 0 for

dislocation solution and horizontal radius at penetrometer tip for numerical solution.
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and for the partially drained solution, neglecting storage (as mv! 0) PD = 1/4[22]. These magnitudes
may be used as both a check on the limiting magnitudes on predicted pore pressures, and as
normalizing magnitudes to define normalized pore pressure magnitudes. These magnitudes are
summarized for various magnitudes of G/Su in Table I.
3.1.4. Results and discussion. The undrained solution is used to evaluate the pressure response of a
standard cone in steady penetration where partial drainage is conditioned by the penetration rate.
The spherical cavity solution is centered on the cone axis, one radius behind the U1 position at the
cone tip. The initial pore pressure field adjacent to the cone tip, prescribed as an interior condition,
is shown in Figure 4(a) together with the streaklines identifying the path of the migrating soil
around the tip. The form of the evolved pore pressure distribution (p� ps)/K is also shown for
dimensionless penetration rates UD from 0.1 to 100. Apparent is the strengthening of the steady
induced pore pressure field with an increase in penetration rate and the very slight elongation of the
pore pressure field with increasing level of soil advection. On the fixed color scale of Figure 4,
induced pore pressures are virtually absent at UD< 0.1, representing drained behavior, and fully
developed, representing undrained behavior for UD> 10. This two orders of magnitude segment
represents the partially drained regime.

The evolution of normalized pore pressures Δp/Δpmax at the tip (U1) and shoulder (U2) locations
are shown as a function of penetration rate UD =Ua/c in Figure 5. Similar to the results for the
spatial distribution, these document the region of partial drainage to span about two-and-a-half
orders of magnitude with a slight offset apparent for rigidity indices G/Su in the range 10–1000. All
calculations are for pore pressure parameters in Equation (20) of B= 1 and Af= 1/3. In this
configuration, the undrained pore pressure is equivalent to the minimum principal-induced stress
pu =BΔs3. The influence of variations in the pore pressure parameter Af in the range �1/2 to 1 are
shown in Figure 6 to have only a small influence on the effects of insertion rate.
Table I. Asymptotic magnitudes of dimensionless pressures for standard and ball penetrometers.

G/Su PD(Standard Penetrometer) PD(Ball Penetrometer)

10 0.23 0.214
100 0.046 0.0214
1000 0.00691 0.00214
Partially drained 1

4 � 1
2

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
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(a) (b) (c)

(d) (e)

Figure 4. Contour plots of equivalent pore pressures around a standard penetrometer. Plots are for PDUD=
(p� ps)/K and at uniform color key for contours with hot representing highest pressure (PDUD = (p� ps)/
K = 7� 10� 3). Individual frames are for (a) prescribed pressure field for undrained condition and streak-
lines for solid flowfield and for UD=Ua/Cv magnitudes of (b) 0.1, (c) 1, (d) 10 and (e) 100, all for G/

Su = 1000.
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With these normalized responses representing a broad range of absolute-induced pressures, these
same results (G/Su= 10; 100; 1000) may be represented as pressures normalized with respect to bulk
modulus as (p� ps)/K as in Figure 7(a) or with respect to undrained shear strength as (p� ps)/Su as
in Figure 7(b). These magnitudes are for the U2 position on the shoulder and confirm the asymptotic
magnitudes of induced pore pressures as dimensionless penetration rates increase above about 100.
Absolute magnitudes of induced pore pressures increase with an increase in soil rigidity and
conform to the undrained magnitudes prescribed at the cavity wall in Equation (26) and in Table I.
Also shown are the magnitudes of pore fluid pressures predicted where injection from the
penetrometer face is considered (Figure 7(a)). This behavior does not change with the soil stiffness,
and the distribution with penetration rate is shown as an upper bound to the behaviors incorporating
failure local to the tip.

Alternatively, the penetration-induced fluid may be normalized with respect to the effective vertical
stress as p� psð Þ=s 0

v0 ¼ BqQt. This representation has been used to examine the relationship between
partially drained pore fluid pressures and in situ permeability [22, 23]. This conversion is not direct, as
some assumption has to be made between the parameters G/Su and Su=s 0

v0 . As a first-order estimate,
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
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Figure 6. Variation of normalized pore pressures with insertion rate for a standard penetrometer for the U2
(shoulder) position for G/Su = 1000 and magnitudes of Af between �1/2 and 1.

(a)

(b)

Figure 5. Variation of normalized pore pressures with insertion rate for a standard penetrometer for the (a)
U1 (tip) and (b) U2 (shoulder) positions. G/Su in the range of 10, 100 and 1000. Pore pressures normalized

relative to peak pore pressure for each magnitude of G/Su.
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the plausible range is taken as 0:3 < Su=s 0
v0 < 0:7 and is taken as Su=s 0

v0 � 1=2 . For this,
substitution yields p� psð Þ=s 0

v0 ¼ BqQt ¼ PDUD
2
3
G
Su. Similarly, a dimensionless permeability may

be defined as [22] KD ¼ 4ks 0
v0 =mUa � 6

UD

Su
G , enabling the penetration-induced pressure to be
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(a)

(b)

(c)

Figure 7. Variation in normalized pressures with dimensionless insertion rate (UD) for the U2 location on a
standard penetrometer. Gray lines represent negative pore pressures as absolute. Induced pore fluid pressures
are normalized with respect to (a) bulk modulus as (p� ps)/K = 3(p� ps)/4G and (b) undrained shear
strength as (p� ps)/Su. Alternately, assuming Su=s 0

v0 � 1=2 then the induced pressure may be represented
as (c) cone metrics BqQt ¼ p� psð Þ=s 0

v0 and plotted against non-dimensional permeability
KD ¼ 4ks 0

v0 =mUa. Note vertical asymptotes are an artifact of plotting a trace of positive-turning-to-negative
pressures on a log scale.

2146 D. ELSWORTH

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
DOI: 10.1002/nag



PORE PRESSURE FIELDS AROUND MOVING PENETROMETERS 2147
represented as a function of the dimensionless permeability, as shown in Figure 7(c). The behavior for
both failure around the probe and for the face injection solution is shown. The undrained behavior on
the left asymptotes to an upper limit and decreases sharply as the effects of partial drainage are felt. The
transition to partial drainage is more rapid than for the face injection solution, which nonetheless bounds
the observed failure responses. In the partially drained regime, the solutions involving the distributed
source follow a similar trend, essentially overprinting in the range BqQt< 1 . This in turn may constitute
a refined relationship between BqQt and KD as a predictive tool. Note that the vertical asymptotes on
Figure 7 are an artifact of plotting a trace of positive-turning-to-negative pressures on a log scale.

3.2. Ball-tipped penetrometer

3.2.1. Undrained solution. Semi-analytical upper and lower bound solutions are available for the
problem of a spherical penetrometer in a cohesive soil [26, 27]. These solutions converge to a
limiting bearing capacity factor of N= 11.42 defined as the ratio of average penetration resistance
pressure, qu, to shear strength, Su, as N= qu/Su. The undrained distribution of pore fluid pressures
may be approximated by combining this limit load as a point force embedded within an infinite
elastic medium to determine the change in mean stress and then relating this mean stress to change
in pore pressures. The change in mean stress around an embedded point load of magnitude
F (Kelvin solution) and for undrained conditions of zero volume change (n = 0.5) is defined as [28]

Δsx ¼ � F

4p
3x3

R5

Δsr ¼ � F

4p
3xr2

R5

Δsθ ¼ 0
g Δsm ¼ 1

3
sx þ sr þ sθð Þ ¼ � F

4pR2

x

R
¼ � F

4pR2
cosθ (27)

where the load is applied at ordinate (x, r) = (0, 0)along the x�axis but positive downward. Thus,
R2 = x2 + r2 with θ measured down from the x�axis as cos θ= x/R. Equating the embedded traction
and the area over, which it acts with the net bearing capacity load yields qu=NSu =F/pa

2 or
F= pa2NSu. Substituting this into Equation (27) and setting the pore pressure parameters B= 1 and
Af = 0 yields the undrained change in pore pressure as pu=BΔsm or

pu ¼ �NSu
4

a2

R2
cosθ ¼ �NSu

4
a2

R2

x

R
(28)

and in dimensionless pressure by pre-multiplying as Pu
D ¼ mvpu . Noting again that volume

compressibility, bulk modulus and shear modulus are related as mv= 1/K= 1/fG yields

Pu
D ¼ � N

4f
Su
G

xD
R3
D

: (29)

This undrained pressure field may be incorporated into the model as an equivalent continuous
source through Equation (5). In an analogous manner, the influence of pore pressures generated by
shearing may be accommodated where the full expression is pu =BΔsm+BA(Δs1�Δs3) and
equivalently for the dimensionless form of Equation (29) as

Pu
D ¼ �B

N

4f
Su
G

xD
R3
D

� BA
3N
4f

Su
G

1

R5
D

max diff x3D; xDr
2
D; 0


 �
(30)

where max diff represents the maximum span of the three orthogonal stress components as the
deviatoric stress.

3.2.2. Partially drained solution. Where the tip geometry is represented by a spherical ball, and the
trailing penetrometer shaft is of insignificant diameter relative to this sphere, the local boundary
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
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condition is also given by Equation (25). However, for both the ball geometry, the face angle, θ,
changes with location around the penetrometer tip. For a sphere of radius, a, centered at (x, r) = (0, 0)
and with the positive x� axis aligned upward (Figure 2), the surface is identified parametrically as
(x, r) = (a cos θ, a sin θ). Here, θ, is the angle relative to the positive x� axis and also represents the
local inclination of the penetrometer face, relative to the r� axis (Figure 2). Substituting x = a cos θ
into Equation (25) yields the equivalent non-dimensional flux at the penetrometer face as

Qb
D
CPT�Ball ¼ q

U
¼ sinθ ¼ � x

a
¼ �xD (31)

and is defined as positive for flow outward from the penetrometer face and into the moving medium.

3.2.3. Asymptotic pore pressure magnitudes. Again, asymptotic magnitudes are available for the
source solutions in both the undrained and partially drained cases. For the undrained case, Equation
(29) at RD= 1 yields

PD ¼ �2:14
Su

G
xD (32)

and for mv! 0, the partially drained solution asymptotes to PD =� xD/2. The variation of these
limiting magnitudes with various G/Su is reported in Table I.

3.2.4. Results and discussion. The undrained pore pressure field is used as a source for the soil
transport model is illustrated in Figure 8(a). This pseudo-elastic pressure field is positive below the
probe and negative above. The streaklines show the proximity of the flow field to the ball face. The
resulting steady distribution of pore fluid pressure is shown in Figure 8(b)-(e) for penetration rates
of 0.1–100. These results are not specific to a particular rigidity ratio but are identical for a full
range of ratios. This artifact is because the volume of the failure zone does not scale with rigidity,
unlike for the cavity expansion solution where the failure zone scales with (G/Su)

1/3. The undrained
response is almost fully developed at UD ~ 10 and is absent at UD ~ 0.1, again spanning about two
orders of magnitude. Because of the nature of the undrained solution, the pore pressure field is
antisymmetric about a horizontal plane through the center of the ball tip.

The normalized induced pressures at pressure recording ports at the ball tip, equator (springline) and
shaft are shown in Figure 9. Because the magnitude of the induced pore pressure scales directly with
G/Su, but its distribution does not change (dissimilar from the cavity expansion solution where the
failure zone extends radially with increasing G/Su), the results are the same for all ratios G/Su.
Drivage-induced pressures are positive at the ball tip location but negative elsewhere, including the
equatorial position and on the shaft. Also, a curiosity is that at intermediate penetration rates, the
tip-generated pore pressures show a net reduction in pressure.

The absolute pressure magnitudes are shown in Figure 10(a) and (b). These are normalized with
respect to bulk modulus in Figure 10(a) and with respect to undrained shear strength in Figure 10(b).
These identify an asymptotic magnitude of dimensionless pore pressure for large penetration rates as
(p� ps)/Su	 3. Again, the pore pressures predicted for face injection provide an upper bound to
pressures predicted from the approximate solution for the ball penetrometer.

4. DATA ANALYSIS

Data from a series of carefully controlled centrifuge penetrometer experiments with a miniature CPT
[29] are shown in Figure 11(a). Experiments in fabricated samples offer the potential for both
applying unusual constraint on material and boundary conditions and in exercising soil behavior
under appropriate stress paths [29, 30]. The results are from multiple penetrations at varied
penetration rates but, for a single sample, are shown in Figure 11(a), accessing a full range of
dimensionless penetration rates. At low penetration rates, the data closely match the response for
G/Su= 1000, depart slightly as penetration rates increase but converge to the upper limit response as
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
DOI: 10.1002/nag



(a) (b) (c)

(d) (e)

Figure 8. Contour plots of equivalent pore pressures around a ball penetrometer. Plots are for PDUD= (p� ps)/K
and at uniform color key for contours with hot representing highest pressure (PDUD= (p� ps)/K=1.97.7� 10� 3).
Individual frames are for (a) prescribed pressure field for undrained condition and streaklines for solid flowfield
and forUD=Ua/Cvmagnitudes of (b) 0.1, (c) 1, (d) 10 and (e) 100, all forG/Su= 1000 (which is representative

of all G/Su).
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UD increases above 100. Although not perfect, the fit identifies the correct range for the partially
drained response, anchoring the lower and upper limits.

These same data [29] may be transformed and plotted as normalized pressure p� psð Þ=s0
v0 ¼ BqQt

versus dimensionless permeability KD ¼ 4s
0
v0mv=UD rather than against penetration rate. These data

yield magnitudes of peak pressure magnitudes p� psð Þ=s0
v0 ¼ BqQt in excess of unity, as shown.

The data also follow the predicted response for the distributed source solution and remains offset
from the face injection solution, which neglects the effects of fluid storage around the cone tip.
From the nature of these data, this effect appears important.
5. CONCLUSIONS

Approximate models have been presented to represent the evolution of pore pressures in the process
zone around standard conical and ball penetrometers. The models use the flow-field developed by an
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
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Figure 9. Variation of normalized pore pressures with insertion rate for a ball penetrometer. All pressure
normalized relative to peak induce pressure at tip location for UD = 1000. Notation mvr = 1/2 represents

compressibility in decompression and recompression half that in virgin compression.

(a)

(b)

Figure 10. Variation in normalized pressures with dimensionless insertion rate (UD) for the ball penetrometer.
Induced pore fluid pressures are normalized with respect to (a) bulk modulus as (p� ps)/K= 3(p� ps)/4G and
(b) undrained shear strength as (p� ps)/Su for soil compressibility in decompression and in recompression half

that in virgin compression.
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(a)

(b)

Figure 11. (a) Variation of normalized pore pressures with insertion rate for a standard penetrometer for U2
(shoulder) positions. G/Su in the range 10, 100 and 1000, with overprinted centrifuge data for a miniature
penetrometer [29]. (b) Same data plotted as p� psð Þ=s0

v0 ¼ BqQt versus KD ¼ 4s
0
v0mv=UD against model

data. All pore pressure data points are positive. Note vertical asymptotes are an artifact of plotting a trace of
positive-turning-to-negative pressures on a log scale.
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incompressible soil–fluid mixture adjacent to the tip to define the trajectories of the migrating soil,
relative to the penetrometer. A stress-decoupled solution for pressure diffusion in an advecting solid
field is used to define the evolution of the fluid field adjacent to the tip. The source term for this
pressure diffusion system is either from (i) a prescribed zone of failure around the tip, which
satisfies stress equilibrium but not fluid continuity; or from (ii) injection of fluid through the face of
the penetrometer, which satisfies fluid continuity but not stress equilibrium.

Although not rigorously coupled to deformation, this approximate analysis is able to replicate the
principal features of rate effects observed in well-controlled laboratory and field experiments.

Approaches accommodating failure around the probe replicate observations most closely. For the
standard penetrometer, the transition from drained to undrained behavior occurs over about two
orders of magnitude in penetration rate for pore pressures recorded at the tip (U1) and about
two-and-a-half orders of magnitude for the shoulder (U2). This response is strongly influenced by
the rigidity of the soil and slightly influenced by the model linking induced total stresses to pore
pressures. For the ball penetrometer, the transition from drained to undrained behavior also transits
two-and-a-half orders of magnitude in penetration rate, although it is offset to higher dimensionless
penetration rates than for standard penetration.

Approaches including only face injection are known to be incapable of replicating response where
penetration is undrained, although limits may be placed in the range of their applicability [23]. For
partial drainage, these approaches have been shown acceptable and capable of estimating
magnitudes of permeability from on-the-fly measurements of induced pore pressures [31]. Face
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2135–2153
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injection provides a reasonable upper limit to induced pore pressures at low penetration rates and
for low ratios of G/Su (Figure 7) but deviates at high penetration rates when penetration is undrained.
NOTATION

Symbol Description (Units)
a Cone radius and normalizing parameter (L)
Af Skempton pore pressure parameter (-)
Bq Dimensionless U2 cone pore pressure magnitude (ML-1 T-2)
Cv Coefficient of consolidation (M2T-1)
G Drained shear modulus (ML-1 T-2)
k Permeability (L2)
K Drained bulk modulus K = 1/mv (ML-1 T-2)
l, lD Length of taper on penetrometer tip, dimensionless length (L)
mv Bulk coefficient of compressibility (M-1LT2)
p, pu, ps Pore fluid pressure, undrained pore fluid pressure, and in situ pore fluid

pressure (ML-1 T-2)
PD;PD

U Dimensionless pore fluid pressure, dimensionless undrained pore fluid pres-
sure (-)

qi Darcy flux or fluid velocity (LT-1)
Q;QD;QD

b Volumetric flux, dimensionless volumetric flux, and dimensionless
boundary flux (T-1,-,-)

Qt Dimensionless cone end bearing (-)
r = x2 Radial ordinate (L)
R,Rmax,RD,RDmax Radius from origin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12 þ r2

p� �
, extent of plastic zone for cavity expansion, di-

mensionless radius, dimensionless radius of plastic zone (L,L,-,-)
Su Undrained shear strength (ML-1 T-2)
t, tD Time, dimensionless time (T)
U,UD Penetrometer velocity in � x1 direction, dimensionless velocity (LT-1)
vi Soil velocity in + x1 direction (LT-1)
xi, xD Coordinates, dimensionless coordinates (L,-)
ev Volumetric strain (-)
m,ms Viscosity of water, and soil (ML-1 T-1)
n Poisson ratio of soil (-)
θ Cone semi-interapical angle (-)
rs Soil bulk density (ML-3)
(s11, s22,s33), (sx, sr, sθ) Stresses (ML-1 T-2)
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