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[1] We use numerical simulations to investigate how fault zone dilatancy and pore fluid
decompression influence fault strength and friction constitutive behavior. Dilatant
hardening can change the frictional response and the effective critical stiffness, Kcr,
which determines the transition from stable to unstable sliding in velocity weakening
fault zones. We study the frictional shear strength response to numerical velocity
stepping experiments and show that when the duration of pore fluid decompression is
long compared to the time necessary for frictional evolution (as dictated by rate and state
friction) both the effective critical slip distance (DC′) and the effective shear strength
direct effect (A′) are increased. We investigate the role of fault zone permeability (k),
dilatancy coefficient ("), and the magnitude of shearing velocity of the fault zone (vlp)
and compare results using the Dieterich and Ruina state evolution laws. Over the
range from k = 10−15 to 10−21 m2, DC′ increases from 25 mm to ∼2 mm and A′
increases from 0.15 to ∼5 MPa. We vary " from 10−5 to 10−3 and the size of the velocity
perturbation from 3X to 1000X and find large increases in the values of DC′ and A′, which
may lead to inhibition of unstable sliding. Our results indicate that spatial variations,
with either depth or lateral extent, in " and k could result in significant changes in the
drainage state in fault zones. Such variation may lead to spatial variation of the
nucleation and propagation of earthquakes based upon the drainage capabilities of the
fault zone.

Citation: Samuelson, J., D. Elsworth, and C. Marone (2011), Influence of dilatancy on the frictional constitutive behavior of a
saturated fault zone under a variety of drainage conditions, J. Geophys. Res., 116, B10406, doi:10.1029/2011JB008556.

1. Introduction

[2] The shear strength (t) of elastic surfaces in frictional
contact may be represented as

! ¼ "#′; ð1Þ

where m is the coefficient of friction and s′ is the effective
normal stress. Effective stress is a function of the applied
normal stress (sn) and the pore fluid pressure at the interface
of the surfaces (PP) [e.g., Hubbert and Rubey, 1959]:

#′ ¼ #n $ PP: ð2Þ

Equations (1) and (2) show that shear strength is a function
of both the coefficient of friction (m) and the pore pressure
(PP) at the interface. If PP changes, either through dilatancy‐
induced depressurization of the pore fluid or shear heating,
the effective stress will increase or decrease, respectively,

leading to an increase or decrease in shear strength. Simi-
larly, if m changes, for example as a function of shearing
velocity or contact aging, the shear strength of the contact
changes.
[3] The rate‐ and state‐dependent friction laws were

developed to describe the evolution of friction in response to
changes in shearing velocity, much like those resulting from
an earthquake. The rate and state law [Dieterich, 1979,
1981; Ruina, 1983],

" ¼ "0 þ a ln
v
v0

! "
þ b ln

v0$
DC

! "
; ð3Þ

describes the evolution of friction away from a steady state
value (m0), in response to a change in sliding velocity from
the background value (v0) to a new value (v) over a critical
slip distance (DC). The state variable ($), thought of as the
average life span of a set of frictional contacts, also evolves
over the sliding distance DC in response to the change in
sliding velocity from v0 to v, according to one of two state
evolution laws: the Dieterich (or Aging) Law,

d$
dt

¼ 1$ v$
DC ′

; ð4Þ

1Rock and Sediment Mechanics Laboratory, Center for Geomechanics,
Geofluids, and Geohazards, and Energy Institute, Pennsylvania State
University, University Park, Pennsylvania, USA.

2Now at Faculty of Geosciences, HPT Laboratory, Utrecht University,
Utrecht, Netherlands.

Copyright 2011 by the American Geophysical Union.
0148‐0227/11/2011JB008556

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, B10406, doi:10.1029/2011JB008556, 2011

B10406 1 of 17

http://dx.doi.org/10.1029/2011JB008556


or the Ruina (or Slip) Law,

d$
dt

¼ $ v$
DC

ln
v$
DC

! "
: ð5Þ

At steady state d$/dt = 0, and for both state evolution laws
$ss = DC/v. If v is larger than v0 (Figure 1a), then the
response will be an immediate increase in friction, followed
by a decay over the critical slip distance DC to a new steady
state value. The magnitude of the increase and subsequent
decay in friction are controlled by the terms aln(v/v0) and
bln(v/v0), respectively. In the case shown in Figure 1a, m0 =
0.6, a = 0.001, b = 0.0015, v0 = 10 mm/s, v = 30 mm/s, and
DC = 25 mm. In this example the parameter a‐b is negative,
resulting in so‐called “velocity‐weakening” behavior, where

m < m0; this is a necessary condition for unstable stick‐slip
sliding on a fault zone.
[4] In a fault zone, porosity also evolves from one steady

state value to another, due to changes in sliding velocity
[e.g., Marone et al., 1990; Segall and Rice, 1995;
Samuelson et al., 2009]. Like friction, porosity (%) appears
to evolve over a distance approximately equal to DC, and
follows the equation

% ¼ %0 $ " ln
v0$
DC

! "
; ð6Þ

where %0 is initial porosity, " is a dilatancy coefficient, and
$ evolves as either the Dieterich (equation (4)) or Ruina
(equation (5)) state evolution laws [Segall and Rice, 1995].
Using " = 5 × 10−4 [Samuelson et al., 2009], Figure 1b
shows the porosity response to a step in shearing veloc-
ity from 10 to 30 mm/s. The magnitude of the porosity
increase is determined by " and the size of the velocity
step. In the case of a completely drained fault zone, the
changes in porosity associated with changes in shearing
velocity will not result in any change in the effective
stress, and therefore the change in shear strength of the
fault zone will track the change in friction as it evolves
from m0 to m. However, if the rate of dilation exceeds the
rate of fluid flow into the fault zone, the pore fluid will
decompress, leading to increased effective stress and shear
strength, potentially inhibiting the nucleation of earthquake
slip [Scholz, 1988a; Sleep, 2006; Barbot et al., 2008;
Rubin, 2008; Brantut et al., 2010; Segall et al., 2010;
Tanikawa et al., 2010]. Previous works show that perme-
ability of fault gouge can vary from 10−14 m2 at low
confining stresses to 10−21 m2 at seismogenic depths
[Wibberley, 2002; Mitchell and Faulkner, 2008], a varia-
tion that could result in a spectrum from quasi‐drained to
quasi‐undrained conditions. In addition to the magnitude
of the velocity increase, the size of the dilatancy coeffi-
cient also plays a role in the drainage state of a fault zone
by controlling the rate of pore volume creation. Laboratory
measurements for granular fault gouge show that " is in
the range of 10−5 to 10−3 [Marone et al., 1990; Samuelson
et al., 2009].
[5] For a tectonic fault zone, the evolution of shear stress

following a perturbation in shear stress or slip velocity
depends on the fluid pressure and state of drainage. In the
undrained case, dilatant hardening will combine with rate/
state friction response to produce a complex behavior in
which shear strength evolution depends on frictional state
evolution, dilation, and fluid flow. A decrease in pore
pressure may result in a significant increase in the fric-
tional yield strength, leading to an effective increase in the
direct effect. Moreover, the effective value of the critical
slip distance DC′ will increase if the time necessary for full
drainage of the fault zone is long compared to the time
necessary for friction state evolution.
[6] In addition to the role of dilatancy and frictional

evolution in determining shear strength, many recent studies
have focused on the importance of frictional shear heating,
in order to better understand the complex processes that
control earthquake nucleation and coseismic slip [Sleep,
1995; Andrews, 2002; Bizzarri and Cocco, 2006a, 2006b;
Rice, 2006; Segall and Rice, 2006; Brantut et al., 2008,

Figure 1. (a) Frictional response to a change in sliding
velocity from 10 mm/s to 30 mm/s as described by the rate‐
and state‐dependent friction law equation (3), using both
Dieterich and Ruina style state evolution. The magnitude of
the increase and subsequent decay in friction resulting from
the velocity step are controlled by the magnitude of the
velocity step; the direct effect, a = 0.001; the evolution
effect, b = 0.0015; the evolution occurs over roughly the
critical slip distance, DC = 25 mm. (b) Porosity evolves
similarly in response to the increase in shear velocity, con-
trolled by the magnitude of the velocity increase, and the
dilatancy coefficient, " = 5 × 10−4.
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2010; Bizzarri, 2009; Liu and Rubin, 2010; Nielsen et al.,
2010; Segall et al., 2010; Ujiie and Tsutsumi, 2010;
Rubin, 2011]. Segall and Rice [2006] predict nearly com-
plete shear decoupling of a fault zone with an initial shear
strength of ∼80 MPa as a result of shear heating, inferring a
net 130 MPa increase in pore pressure. Bizzarri and Cocco
[2006b] argue that the importance of dilatancy to the overall
strength evolution of a fault zone during nucleation is rel-
atively small. They show that the pore pressure evolution in
a nondilatant, thermally pressurized fault zone is ultimately
very similar to that in a dilatant, thermally pressurized fault
zone, differing only by a small amount when the rate of pore
volume creation is at its maximum. Of course, the values
used for the dilatancy rate play an important role in such
model studies. Our model results, coupled with our labo-
ratory measurements of diltancy [Samuelson et al., 2009]
show that dilatancy’s contribution to pore pressure change
may be much larger than predicted by Bizzarri and Cocco
[2006a, 2006b].

[7] The purpose of this paper is to examine the influence
of dilatancy and fluid decompression on the frictional
properties of a fluid‐saturated fault zone. We focus on faults
with complex, realistic friction constitutive behavior such as
that described by the rate and state friction laws. Sensitivity
analyses are conducted to represent experimental conditions
replicated in the Penn State triaxial apparatus [Ikari et al.,
2009; Samuelson et al., 2009; Faoro et al., 2009] and rep-
resentative of constitutive parameters consistent with a fault
zone at ∼10 km depth. Correspondingly, we examine the
functional alteration of the friction constitutive parameters,
absent consideration of shear heating, in order to focus on
the role of dilation and fluid flow.
[8] In some ways the work presented here is similar to

previous numerical studies on the role of dilatancy in fault
zones, in particular the ability of pore fluid decompression to
stabilize fault zones by transiently increasing shear strength
[Garagash and Rudnicki, 2003a, 2003b; Hillers et al., 2006;
Hillers and Miller, 2006; Segall et al., 2010]. Our work
differs from that of Garagash and Rudnicki [2003a, 2003b]
by way of our implementation of rate‐ and state‐dependent
frictional behavior, rather than slip‐weakening behavior
alone, which allows us to investigate the full evolution of
shear strength in a fault zone with controlled fluid drainage
parameters. Additionally, our work differs from the studies
of Hillers et al. [2006] and Hillers and Miller [2006] in that
our intention is to analyze specifically the effective change in
rate and state constitutive parameters resulting solely from
fault zone dilatancy. To do this, we use a numerical simu-
lation of a laboratory experiment performed under the in situ
conditions of a natural fault zone. We use the numerical
experiments to focus on the interplay dilatancy and drainage
exert on the evolution of “effective” rate‐state constants and
bounds of these the effects of dilatant hardening for these
effective parameters.

2. Constitutive Model

[9] For a deforming fault zone, the rate/state friction
response is governed by two coupled differential equations.
The first involves state evolution d$/dt, for which we can
either use equation (4) or equation (5), and the second is
elastic coupling between the fault and its surrounding, which
can be written as dm/dt, in the case of a simple spring‐slider
model (Figure 2a). We represent the fault as a spring‐slider
system composed of a linear spring of stiffness KS activated
by a load point moving at constant velocity, vlp, the dis-
placement of which is ulp. Differential displacement between
the load point and slider generates shear stress (t) as

! ¼ KS ulp $ u
# $

; ð7Þ

where u is the displacement of the slider. Equation (7) is
Hooke’s law, and if we divide both sides by s′, and take the
time derivative, we obtain

d"
dt

¼ KS

#′
vlp $ v
# $

; ð8Þ

where vlp and v are the load point velocity and slider velocity,
respectively, and dm/dt is the elastic interaction term com-
monly used to solve the rate and state friction law.

Figure 2. (a) Schematic poromechanical representation of
our fault model. The shaded region represents a fault block
with displacement u subjected to normal stress sn in con-
tact with a granular fault zone with internal pore pressure,
PP. The fault zone is connected to an external reservoir at
pore pressure P0. At steady state PP = P0. The fault block
is connected to a load point by a spring of stiffness KS.
Shear stress, t, is measured at the load point. Sense of
shear is top to the right. (b) Schematic of the sheared fault
zone. Shear, and therefore dilation, is assumed to be
evenly distributed across the thickness of the layer (2L).
P0, fluid compressibility (KW), and permeability (k) are
presumed to be constant, while porosity (%), and internal
pore pressure (PP) are time‐dependent.
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[10] Equations (5)–(8) are sufficient in cases where nei-
ther KS, nor s′ are functions of time; however, in the case of
a saturated, quasi‐impermeable fault zone, s′ is time‐
dependent, due to the transient decompression of the pore
fluid [e.g., Rice and Rudnicki, 1979; Rudnicki and Chen,
1988; Segall and Rice, 1995; Barbot et al., 2008]. In such
cases, the time derivative of

! ¼ " #n $ PPð Þ ¼ KS ulp $ u
# $

; ð9Þ

results in an elastic coupling term where

d"
dt

¼ KS

#n $ PPð Þ vlp $ v
# $

þ "

#n $ PPð Þ
dPP

dt
: ð10Þ

In this case it is clear that in addition to solving d$/dt, and
dm/dt, we must also now solve dPP/dt.
[11] To obtain an equation for dPP/dt, we must include a

term based on the rate of plastic pore volume creation,
which allows for decompression of pore fluid, a term based
on the diffusion of pore fluid into the fault zone, allowing
the pore pressure to return to an equilibrium value, and
finally a term allowing the pore volume, and therefore fluid
pressure, to change elastically in response to changes in
effective stress [e.g., Segall and Rice, 1995]:

dPP

dt
¼ dPP

dt

! "

plastic
þ dPP

dt

! "

drainage
þ dPP

dt

! "

elastic
; ð11Þ

which we can then express in mechanical terms as

dPP

dt
¼ dPP

dVf

dVf

dt

! "

plastic
þ dVf

dt

! "

drainage
þ dVf

dt

! "

elastic

" #

; ð12Þ

where Vf is the fluid volume. The term outside of the
brackets (dPP/dVf) can be obtained by rearranging the bulk
modulus of water (KW):

dPP

dVf
¼ $KW

Vf
: ð13Þ

[12] The first term inside of the brackets describes the
decompression of the pore fluid, which can be obtained by
taking the time derivative of equation (6):

dVf

dt

! "

plastic
¼ VT

d%
dt

¼ AL
$"

$

d$
dt

! "
; ð14Þ

where A is the cross‐sectional area of interest and L is the
half‐thickness of the gouge layer, combining as the half‐
volume of the gouge layer, VT.
[13] We use a quasi‐steady approximation for fluid flow

into the layer ( dVf

dt

% &
drainage) with the flow rate proportional

to the instantaneous pressure difference between fault
perimeter and fault core, rather than accommodating the full
transient flow [Samuelson et al., 2009]. This allows us to
calculate a fluid pressure that is averaged over the thickness
of the fault zone and also simplifies our final differential
equations. Therefore for volume flow rate we use

dVf

dt

! "

drainage
¼ Q ¼ $A

k
&

PP $ P0ð Þ
L

; ð15Þ

where A is the area through which the fluid flow takes place,
h is the dynamic fluid viscosity, k is the permeability of the
fault zone gouge, PP is the internal fault zone fluid pressure,
P0 is a remote pore pressure external to the fault zone, and L
is again the fault zone half‐thickness.
[14] The final term inside of the brackets of equation (12)

deals with the elastic compressibility of the pore volume.
We couple the compressibility of the pore volume with the
rate of change of fluid pressure to arrive at the rate of change
of fluid volume due to pore compressibility:

dVf

dt

! "

elastic
¼ dPP

dt
dV%

dPP
¼ dPP

dt
Vf '%

# $
; ð16Þ

where b% is the pore compressibility of the fault core, and
acknowledging that the pore volume V%, and fluid volume Vf
are equivalent. Combining the terms from equations (13)–
(16) leads to a final differential equation for the rate of
change of fluid pressure in a partially drained, dilatant fault
zone:

dPP

dt
¼

"
$
d$
dt

# $
þ k

&L2 PP $ PP0ð Þ
% &

% 'W þ '%
# $ ; ð17Þ

which acknowledges that the fluid volume in the half‐layer
is equal to the product of the area (A), the layer half‐
thickness (L), and the porosity of the fault zone (%).
[15] Once we solve equation (3) for v, we have a full set of

differential equations, conceptualized in Figure 2b, that can
be solved to obtain m, and PP (and therefore t) of a dilatant
fault zone subjected to a sudden increase in shear velocity,
as during the nucleation phase of an earthquake:

v ¼ du
dt

¼ v0 exp
1
a

u$ u0ð Þ $ b ln
v0$
DC

! "' () *

d$
dt

¼ 1$ v$
DC

or
d$
dt

¼ $ v$
DC

ln
v$
DC

! "

d"
dt

¼ KS

#n $ PPð Þ vlp $ v
# $

þ "

#n $ PPð Þ
dPP

dt
d%
dt

¼ $"

$

d$
dt

þ %'%
dPP

dt

dPP

dt
¼

"

$

d$
dt

! "
þ k

&L2
PP $ PP0ð Þ

! "

% '% þ 'W
# $

9
>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>;

: ð18Þ

We solve these coupled equations using a modified fifth‐
order Runge‐Kutta‐Fehlberg method with error tolerance
between 1 × 10−6 and 5 × 10−4. Then, using the effective
stress law (equation (1)), we obtain the shear strength of the
fault zone as a function of changes in both friction coeffi-
cient and pore pressure.
[16] Once we obtain solutions to equation (18), we invert

the model output using a Levenberg‐Marquardt least
squares approach to obtain a best fit estimate of the rate and
state friction constitutive parameters [e.g., Blanpied et al.,
1998; Mair and Marone, 1999; Frye and Marone, 2002,
Ikari et al., 2009]. The results of this inversion are effective
values of the rate/state friction parameters A′ and DC′, which
correspond to the standard constitutive parameters A (= as′)
and DC. The use of the effective constitutive parameters, A′
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and DC′, explicitly acknowledges that the effective shear
strength response will be the combined effect of the intrinsic
friction behavior and the poromechanical behavior.

3. Results

[17] We begin by considering the effects of changing the
permeability (k), dilatancy coefficient ("), and load point
velocity step (vlp) on the pore pressure and hence shear
strength of dilatant fault zones. Decreases in k and increases
in " and vlp should lead to more thorough decompression of
the pore fluid and larger increases in the values of A′ andDC′.
[18] In all model experiments we use the same basic para-

meters, while varying permeability (k), dilatancy coefficient
("), and load point velocity (vlp) step size. The constants we
use are based on field evidence, experimental analysis,
known machine values of the Penn State biaxial apparatus,
and are roughly appropriate for a depth of ∼10 km and a
temperature of 250°C. The constants we use are as follows:
m0 = 0.6 [Byerlee, 1978], %0 = 0.05 [Wibberley et al., 2008],
v0 = 10 mm/s, DC = 25 mm [Marone, 1998], a = 0.001 and
b = 0.0015 [Marone et al., 1990; Mair and Marone, 1999;
Ikari et al., 2009], KS = 0.1 MPa/mm (measured stiffness
of Penn State load frame), BW = 6.87 × 10−4 MPa−1

(water compressibility) [Wagner and Pruss, 2002], BP =
5.0 × 10−4 MPa−1 (pore compressibility) [Rice, 2006], s =
250 MPa, P0 = 100 MPa, h = 1.28 × 10−10 MPa·s (dynamic
viscosity of water) [Harvey and Friend, 2004], and finally
L = 3000 mm [Wibberley and Shimamoto, 2003]. With m =

0.6 and s′ = 150 MPa, the initial steady state shear strength
of our simulated fault zone is 90 MPa.
[19] In order to vary the drainage state of the simulated

fault zone we systematically alter the permeability (k) from
10−15 to 10−21 m2 based on previous works [Wibberley,
2002; Wibberley and Shimamoto, 2003, Wibberley et al.,
2008; Mitchell and Faulkner, 2008; Tanikawa et al.,
2010], the dilatancy coefficient (") from 10−5 to 10−3

[Marone et al., 1990; Samuelson et al., 2009; J. Samuelson
and C. Marone, Laboratory measurements of the frictional
dilatancy coefficient for natural and simulated fault zones
manuscript in preparation, 2011], and the load point
velocity (vlp) from 10 to 30, 100, 300, and 1000 mm/s to
simulate the velocity stepping experiments of the Penn
State biaxial/triaxial apparatus [e.g., Mair and Marone,
1999; Ikari et al., 2009; Samuelson et al., 2009]. Hillers
and Miller [2006] point out that the dilatancy measure-
ments of Marone et al. [1990] were done at slip
velocities within the realm of the nucleation of dynamic
slip (1–10 mm/s), and subsequently surmised that " may be
far smaller at the lower velocities more typical at nucle-
ation. Contrary to that notion, the more recent experiments
of Samuelson et al. [2009], which measured the dilatancy
coefficient over a range of velocity step sizes from 1 to
100 mm/s showed no strong correlation between velocity
and ", suggesting that using a dilatancy coefficient on the
order of 5 × 10−4 is appropriate for those simulations in
which " is not the control variable. The experiments of
Samuelson et al. [2009] were, however, conducted at much
lower effective stresses than those simulated here, and
therefore " could be different at higher effective stress, though
these experiments showed no consistent variation of " based
on normal stress. Moreover, the experiments ofMarone et al.
[1990] were conducted at s′ = 150 MPa and showed a
dilatancy coefficient within the range used in our simulations.
[20] A time series using the Dieterich state evolution law

(Figure 3) shows evolution of m, v, and % in response to a
change in the load point velocity from 10 to 30 mm/s in a
completely drained fault zone. Friction increases from 0.6 to
approximately 0.601 and then evolves to 0.5995, and porosity
evolves from 0.15 to 0.1506. Note that the evolution of the
shearing velocity of the fault zone from 10 to 30 mm/s is not
instantaneous due to elastic coupling, and for the para-
meters used, we find a slight overshoot in velocity, such
that v > 30 mm/s, which can be seen both in Figure 3 and
in model results presented below. In all cases, models were
run until key variables (m, %, and PP) reached steady state.
The time necessary to reach steady state is controlled by
friction evolution in cases where pore fluid decompression is
insignificant or by the pore pressure evolution in other cases.

3.1. Variable Permeability
[21] Using " = 5 × 10−4 and vlp = 30 mm/s, we explored a

range of fault permeabilities from 10−15 to 10−21m2 using both
the Dieterich and Ruina (Figure 4) state evolution laws. Both
laws show that for low fault zone permeability the depres-
surization of pore fluid and associated shear strengthening is
significant. Using the Dieterich law and k ≥ 10−17 m2, we find
a very small reduction in pore fluid pressure (<0.1 MPa)
(Figure 4a). For k < 10−17 m2 the fault zone is progressively
more depressurized as permeability decreases. In these cases
the rate of pore volume creation exceeds the rate of fluid flow

Figure 3. (a) Frictional response to 10–30 mm/s velocity
step as a function of time, where a = 0.001, b = 0.0015,
DC = 25 mm. (b) Time series of fault velocity. Acceleration
is not instantaneous, but rather a function of the elastic cou-
pling between the load point and the fault. (c) Porosity
response of the fault zone to the 10–30 mm/s velocity step
as a function of time. " = 5 × 10−4.
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into the fault zone. At k = 10−18 m2 the maximum depres-
surization of the fault zone is 0.39 MPa, and this value
increases to 8.2 MPa at k = 10−21 m2.
[22] For a fluid saturated fault, the evolution of shear

strength, t = m(sn‐PP), with slip varies with fault zone
permeability (Figure 4b). Where the permeability is rela-
tively large (k ≥ 10−17 m2), and therefore the reduction in
pore pressure small, the maximum shear strength of the fault
zone is 90.2 MPa for our model parameters. Here we see
that the evolution of shear stress behaves very nearly as it
would under completely drained conditions, with the shear
stress evolving, as does friction, over the sliding distance
DC. The increase in shear strength is controlled by the
friction direct effect (A = as′).
[23] As the permeability of the shear zone decreases, the

evolution of shear strength transitions from being controlled
by friction evolution to being controlled by the por-

omechanical factors of fluid depressurization and flow. The
increase in shear strength as a result of pore fluid decom-
pression is particularly evident at this scale beginning at k =
10−19 m2, where the shear strength maximum is 91.3 MPa,
and increases to a maximum shear strength of 94.9MPa when
the permeability of the fault zone is 10−21 m2 (Figure 4b).
[24] We initially suspected that Ruina state evolution

would result in more complete pore fluid depressurization
due to the increased rate of pore volume creation that is
evident in Figure 4b, and that suspicion was borne out;
however, the difference is very subtle (Figures 4c and 4d).
At k ≥ 10−17 m2 the pore pressure reduction is quite small,
consistent with the result for Dieterich state evolution. At
lower permeabilities the pore pressure response increases
from 0.51MPa at k = 10−18 m2 to 8.3MPawhere k = 10−21m2.
[25] As with pore pressure evolution, the difference

between the Dieterich and Ruina laws with regard to the

Figure 4. Effect of permeability (k) on (a, b) pore pressure and (c, d) shear strength evolution as a
result of a threefold velocity step in a fault zone with a half‐thickness of 3 mm. Figures 4a and 4c
are for Dieterich style state evolution and Figures 4b and 4d are for Ruina state evolution. In all cases
v0 = 10 mm/s, vlp = 30 mm/s, a = 0.001, b = 0.0015,DC = 25 mm, " = 5 × 10−4, sn = 250MPa, P0 = 100MPa.
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evolution of shear stress are small. At k ≥ 10−17 m2 the peak
shear stress is essentially unchanged from what it would be
in a completely drained fault zone at a value of 90.17 MPa.
At k < 10−17 m2 the peak shear stress begins to be more and
more controlled by decompression and subsequent diffusion
of pore fluid in the fault zone. At k = 10−18 m2 the peak
shear strength is 90.3 MPa, and it is 94.9 MPa when the
permeability of the fault zone is 10−21 m2.
[26] Both the Dieterich and Ruina laws result in a fault

zone that is very nearly completely undrained when k =
10−21 m2. The undrained pore fluid decompression can be
described by the equation

DPmax ¼
$"

%0 '% þ 'W
# $ ln v0

vlp

! "
: ð19Þ

We will discuss DPmax more fully later, but for the present
case where " = 5 × 10−4, bW = 6.87 × 10−4 MPa−1, bP =
5.0 × 10−4 MPa−1, %0 = 0.05, v0 = 10 mm/s, and vlp =
30 mm/s, DPmax equals 9.26 MPa, and therefore in the most
impermeable case presented here (k = 10−21 m2) the fault
zone reaches a level of depressurization of 0.89·DPmax.

3.2. Variable Dilatancy Coefficient
[27] On the basis of previous experimental results we

varied the dilatancy coefficient (") over the range 10−5 to
10−3 [Marone et al., 1990; Samuelson et al., 2009]. We held
permeability constant at 10−19 m2, and all other parameters
are identical to those used in section 3.1. Using k = 10−19 m2

results in a reduction in pore fluid pressure at all values of "
for both types of state evolution (Figures 5a and 5c).

Figure 5. Effect of variable dilatancy coefficient (") on (a, b) pore pressure and (c, d) shear strength evolution
as a result of a threefold velocity step in a fault zone with a half‐thickness of 3 mm. Figures 5a and 5c are for
Dieterich style state evolution and Figures 5b and 5d are for Ruina state evolution. In all cases v0 = 10 mm/s,
vlp = 30 mm/s, a = 0.001, b = 0.0015, DC = 25 mm, k = 1 × 10−19 m2, sn = 250 MPa, P0 = 100 MPa.
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[28] Using the Dieterich law, the magnitude of the pore
fluid decompression varies from 0.05 MPa where " = 10−5

to 3.7 MPa at " = 10−3 (Figure 5a). We can see that when
" is large there is an elastic overshoot of the slider that
results in a periodic “ringing” of the pore pressure (and
shear stress) around the eventual steady state value. We
use the DPmax term to describe how close to fully
undrained the fault zone becomes. This case is slightly
more complicated than for variable permeability since
DPmax is different for each different dilatancy coefficient,
but it is important to note that the fault zone depressur-
ization is greater than 0.2·DPmax in all cases and is actu-
ally more fully undrained at lower values for ", though
obviously the overall magnitude of the total depressuriza-
tion is larger when " is also large.
[29] When " = 10−5 the increase in shear strength due to

dilatancy hardening is nominal with a maximum shear
strength of 90.2 MPa (Figure 5b). When " is increased to
10−3, dilatancy hardening is much more pronounced, with
maximum shear strength reaching 92.2 MPa. Owing to the
low permeability of the modeled fault zone in this case, the
time necessary for pore fluid to flow into the fault results in
a large increase in the effective critical slip distance in all
cases.
[30] Comparing the two state evolution styles, we see

that Ruina evolution (Figure 5c) results in slightly higher
pore fluid decompression and a smaller shear strength
increase than the Dieterich law (Figure 5a). At " = 10−5 the
difference between Dieterich and Ruina state evolution is
negligible, with a 0.06 MPa reduction in pore pressure.
When the dilatancy coefficient is larger (" = 10−3) the
difference between the two evolution styles is more
pronounced with pore fluid pressure being reduced by
3.9 MPa for the Ruina law, as opposed to 3.7 MPa
using Dieterich evolution.
[31] When " = 10−5 using the Ruina law peak shear

strength is barely higher than in a completely drained sce-
nario, reaching only 90.15 MPa (Figure 5d). When " = 10−3

the maximum shear strength is increased to 92.3 MPa. There
is a clear increase in the effective values of the direct effect
and the critical slip distance as " is increased from 10−5 to
10−3. These results illustrate the important relationship
between pore fluid pressure reduction and ", due to the
increasing potential for depressurization that results from
increased dilatancy.

3.3. Variable Load Point Velocity
[32] A key variable in studies of earthquake nucleation

and dynamic rupture is the fault slip velocity [e.g., Nielsen
et al., 2010]. We evaluate the influence of this parameter
by varying the load point velocity (vlp) relative to the
background sliding velocity, v0. By increasing vlp, we also
increase the eventual porosity to which the fault zone
evolves in its new steady state, thereby increasing the
effective time rate of dilatancy. With the increase in d%/dt
there is an increase in the rate of decompression of the pore
fluid, yet the rate of fluid flow into the fault zone is con-
trolled by the permeability of the fault zone. In general, we
find that the higher vlp the higher the magnitude of the
dilatancy hardening. All parameters in these model runs are
the same as above with the specification that k = 10−19 m2,

" = 5 × 10−4. We vary vlp from a threefold increase over
v0, 10 to 30 mm/s, to a 100‐fold increase from 10 mm/s to
1 mm/s.
[33] Using the Dieterich law, the relatively low value

assumed for permeability results in a significant reduction
in pore pressure at all values for vlp (Figure 6a). When
vlp = 30 mm/s pore pressure is reduced by 2.1 MPa,
scaling up to a 28.1 MPa reduction as a result of a jump
to 1 mm/s. Using higher values for vlp results in a higher
magnitude of undrained pore pressure change (DPmax),
independent of the increased potential for depressurization
due to increased d’/dt. The results of these runs show that the
fault zone becomes increasingly undrained as vlp is increased,
with depressurization ranging from 0.23·DPmax at 30 mm/s
up to nearly 0.73·DPmax at 1 mm/s.
[34] Shear strength increase resulting from the decom-

pression of pore fluid in these cases is dramatic (Figure 6b).
With only a 3X jump in velocity, the maximum shear
strength is increased to 91.3 MPa, a response which com-
pletely overshadows the shear strength response due to the
evolution of m. When vlp is stepped up to 1 mm/s the max-
imum shear strength of the fault zone reaches 106.5 MPa,
dwarfing a purely drained response which would only lead to
a peak shear strength of 90.7 MPa.
[35] Using Ruina state evolution results in in slightly more

pore pressure reduction than Dieterich style evolution
(Figure 6c). When vlp = 30 mm/s, pore pressure is reduced
by 2.3 MPa further reducing by 28.8 MPa at 1000 mm/s.
DPmax is identical regardless of the type of state evolu-
tion used, resulting in a fault zone that depressurizes
from 25% to 74% of DPmax using Ruina style state
evolution. As with the Dieterich law, the fault zone
becomes increasingly undrained at progressively higher
shear rates.
[36] Shear strength is increased at all sliding velocities

(Figure 6d). When vlp = 30 mm/s the peak shear strength is
91.4 MPa, dwarfing the drained frictional response which
would only lead to a peak of 90.14 MPa. At a load point
velocity of 1 mm/s the shear strength increases to a maxi-
mum of 106.9 MPa, again completely overwhelming the
purely frictional response.

3.4. Nondimensional Analysis
[37] It can be useful to evaluate numerical results in a

nondimensional form. This approach is particularly
helpful for understanding the extent of depressurization
in a fluid saturated fault zone. We use the nondimen-
sional terms

uD ¼ u
DC

tD ¼ tk
% 'W þ '%
# $

&L2

$D ¼ $v0
DC

PD ¼ DPP

PP0
or PD ¼ DPP

DPmax

9
>>>>>>>>>>>=

>>>>>>>>>>>;

; ð20Þ

where the subscript D denotes a dimensionless variable.
PD is presented in two formats, the first will provide a
measurement of the degree of pore fluid depressurization
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the fault zone experiences (Figures 7a, 7b, and 7c), and the
second is a measure of how fully undrained the fault zone is as
a result of dilational decompression (Figures 7d, 7e, and 7f).
The transition from drained to undrained behavior for a stiff
system (Ks→∞) is indexed by the dimensionless shear
velocity VD = uD/tD = (L2/k) · (nh/KWDC) [Samuelson et al.,
2009], where KW = 1/bW. The first term represents the
reciprocal rate of fluid loss by drainage, and the second
term represents the rate of pore volume change by dila-
tion or compaction. A threshold magnitude of VD∼1
marks the transition from drained (VD & 1) to undrained
(VD ' 1) behavior. In the numerical experiments reported
here L (3 mm), h (1.28 × 10−10 MPa·s), KW (1456 MPa),
and DC (25 mm) are held constant so the transition from
drained to undrained response scales with the ratio of
shear velocity to permeability as VD =

uD
tD

≈ 3.13 × 10−14

(meter seconds) ·
(

k
.

[38] Using Ruina style state evolution we follow the same
basic pattern of analysis as that used in Figures 4c and 4d,
Figures 5c and 5d, and Figures 6c and 6d, using the same
parameter values as the analogous dimensional results. As
permeability is reduced from 10−15 m2 to 10−21 m2 the
gouge layer transitions from functionally drained to nearly
completely undrained and ranges from 0 to ∼8% total
depressurization reaching 0.9*DPmax (Figures 7a and 7d).
The transition appears to take place between k = 10−17 m2

and k = 10−18 m2, which corresponds to a change in VD from
∼0.09 to 0.9. Likewise, varying " from 10−5 to 10−3 results
in increasing total depressurization from less than 1% for
small " to 4% at large " (Figure 7b). Interestingly, though,
the degree of drainage of the gouge layer decreases from a
depressurization of 0.35·DPmax at " = 10−5 to 0.21·DPmax at
" = 10−3 (Figure 7e), suggesting that the gouge layer is more
fully undrained at lower values of ", a counterintuitive
result. This appears to be the result of the high dilatancy

Figure 6. Effect of load point velocity (vlp) steps on (a, b) pore pressure and (c, d) shear strength evo-
lution in a fault zone with a half‐thickness of 3 mm. Figures 6a and 6c are for Dieterich style state evo-
lution and Figures 6b and 6d are for Ruina state evolution. In all cases v0 = 10 mm/s, a = 0.001, b =
0.0015, DC = 25 mm, " = 5 × 10−4, k = 1 × 10−19 m2, sn = 250 MPa, P0 = 100 MPa.
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Figure 7. Dimensionless rate‐ and state‐dependent pore pressure response to a velocity step using Ruina
style state evolution. Shown on the left is pressure response normalized by the initial pore pressure (P0),
and shown on the right is pressure response normalized by the undrained pore pressure drop (DPmax). (a, d)
Effect of permeability (k) from 10−15 to 10−21 m2. (b, e) Effect of dilatancy coefficient (") from 10−5 to 10−3.
(c, f) Effect of load point velocity (vlp) step size from 10 mm/s to 30, 100, 300, or 1000 mm/s. Except when
the parameter is the relevant variable, v0 = 10 mm/s, a = 0.001, b = 0.0015, DC = 25 mm, k = 1 × 10–19 m2,
" = 5 × 10−4, vlp = 30 mm/s, sn = 250 MPa, P0 = 100 MPa.
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coefficient leading to rapid decompression of the pore fluid
and consequently slowed acceleration of the slider. During
this slowed acceleration the dilatancy rate slows and the
fault zone is able to drain enough to reduce the absolute
efficacy of the pore fluid decompression (Figure 8). The
slowed acceleration is evident in the offset of the pressure
peaks to progressively larger shear displacements with
increasing ". In this case of variable ", VD is ∼9.5, indicating
a strongly undrained layer, it is important to note that VD
does not provide a complete description for the drainage
state of the layer, as there is significant variability in
depressurization based solely on a change in ". This
apparent inconsistency results from the effective magnitude
of Dc increasing with an increase in " (discussed later) and
thus the effective magnitude of VD is not constant for this
suite (Figures 7b and 7e) despite k, L, v, h, and Kw all being
invariant. This behavior is a consequence of the stiffness of
the loading system, as this behavior is not manifest for an
infinitely stiff system, where VD is an adequate descriptor of
drainage state [Samuelson et al., 2009]. Finally, we see that
increasing the size of the velocity step from 10 to 30 mm/s to
10–1000 mm/s results in an increase in total depressurization
from approximately 2% to over 28% (Figure 7c) and that the
degree of drainage in the layer ranges from 0.25·DPmax to
0.74·DPmax over the same velocity step range (Figure 7f).
[39] We chose to use Ruina style state evolution for this

dimensionless analysis, noting that using Dieterich style
evolution would result in differences of the same magnitude

as the difference shown in Figures 4–6. The nondimensional
analysis revealed that permeability (k), viscosity (h), and the
square of the half‐layer thickness (L2) are linked in
equations (18) and (20) as the ratio k

&L2; therefore, though we
achieve the results of Figure 4 and Figures 7a and 7d by
decreasing the permeability of the gouge layer, the same
response would be elicited by increasing the pore fluid
viscosity or the layer half‐thickness appropriately.

3.5. Effective Constitutive Parameters
[40] To determine the effective increase in the rate and

state constitutive parameters, we took the model results of
shear stress evolution from Figures 4 through 6 and deter-
mined least squares, best fit parameters assuming constant
effective normal stress. The approach is identical to the
process used to obtain friction constitutive parameters from
laboratory data [e.g., Blanpied et al., 1998]. We focus here
on the effective direct effect a′, related to the term a, from
equation (3), and the effective critical slip distance, DC′,
over which frictional strength evolves to the new back-
ground value. We model shear stress (t) rather than friction
(m) because it is in the shear stress response to an increased
sliding velocity that we can see the effect of transient
depressurization of the fault zone, with massive increases in
t and DC due to increased effective stress. We can describe
the evolution of shear stress resulting from increased sliding
velocity by multiplying equation (3) by the effective normal
stress (s′):

! ¼ !0 þ A ln
v
v0

! "
þ B ln

v0$
DC

! "
; ð21Þ

where A and B are given by as′ and bs′, respectively.
[41] We are interested in the potential role of pore fluid

and dilational decompression in tectonic fault zones. Thus
an inherent assumption in this approach is that s′ is constant
throughout the evolution of shear stress. Although we know
this is incorrect in detail for our models, this procedure
provides effective values for A and DC and highlights the
potential role of dilatant hardening in complex fault
behavior such as slow earthquakes and rupture nucleation.
In all subsequent cases the drained values for A and DC are
0.15 MPa and 25 mm, respectively.
[42] We varied the permeability of our fault zone over the

range 10−15 to 10−21 m2, and over that range, using both the
Dieterich and Ruina state evolution equations, a gouge zone
of thickness 2L (6 mm) ranges from being nearly completely
drained to nearly completely undrained. As a result of this
transition, we move from a situation where A′ ≈ A and DC′ ≈
DC when the layer is drained to a situation where A′ ' A
and DC′ ' DC (Figure 9). When k ≥ 10−16 m2 the Dieterich
law shows no change in A′ from the input value, DC′ is
likewise unaffected by what small pore fluid depressuriza-
tion takes place at these permeabilities. At lower perme-
abilities (k < 10−16 m2) A′ and DC′ progressively increase.
When k = 10−17 m2 the effectiveness of dilatancy hardening
at increasing A′ and DC′ is small but noticeable with A′ =
0.17 MPa and DC′ = 31.5 mm. At k = 10−21 m2 A′ experi-
ences an over 30‐fold increase to 4.6 MPa and DC′ has
increased over 60 times to 1616 mm.
[43] Ruina state evolution results in similar, but subtly

different, changes in DC′ and A′ as permeability of the fault

Figure 8. Showing the evolution of slider velocity as a
result of an increase in load point velocity from 10 to
30 mm/s in a low permeability (k = 1 × 10−19 m2) sim-
ulated fault zone with variable dilatancy coefficient (").
As " increases the decompression of the pore fluid is
more pronounced, resulting in slowed acceleration of the
slider toward 30 mm/s. This slowed acceleration allows more
time for drainage resulting in the nonintuitive decreased total
degree of depressurization seen in Figure 7e for higher values
of ". The increased harmonic ringing seen at higher values of
" appears to be a similar consequence of the inhibited
acceleration which results in increasingly significant elastic
overshoot of vlp, causing the ringing.
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zone changes. At relatively high permeability (k ≥ 10−16 m2)
the fault zone does not experience any significant dilatant
hardening resulting in increased maximum shear strength
or critical slip distance. When permeability is less than
10−16 m2 both A′ and DC′ are increased over the input
value. At k = 10−17 m2 A′ is increased to 0.19 MPa, and
DC′ is increased, though only very slightly, to 25.4 mm.
When k = 10−21 m2 the increases in A′ and DC′ are dra-
matic with A′ = 4.9 MPa and DC′ = 2116 mm. Even though
a visual comparison of Figures 4a and 4c shows very similar
evolution of shear strength, DC′ is significantly larger using
Ruina evolution because of the inherently rapid evolution of
that law. The evolution of shear strength using Ruina at low
permeability is very similar to that using Dieterich because of
the large reduction in pore pressure and the subsequent flow

of fluid into the fault zone which is time dependent, so while
the shear stress lines themselves look very similar, in order to
fit the same evolution using the Ruina law requires a much
larger DC′ than when using Dieterich evolution.
[44] Figure 10 shows the results of inverting the model

data when we vary the dilatancy coefficient (") over the
experimentally determined range 10−5 to 10−3. We used a
relatively low permeability, k = 10−19 m2, and found that
fault zone pore fluid was depressurized at all values of ",
significantly so beginning at " ≥ 10−4. At " = 10−5 DC′ is
increased to 32 mm using the Dieterich law and 35 mm using
Ruina. The direct effect is effectively increased to 0.16 in
both Dieterich and Ruina state evolution schemes. As "
increases, the magnitude of dilatancy hardening increases,
and with it A′ and DC′ are likewise increased. When " = 10−3

dilatancy hardening is significant resulting in A′ = 3.2 MPa
and DC′ = 53 mm using Dieterich evolution and A′ = 3.5 MPa

Figure 10. Effective alteration of the friction constitutive
parameters A and DC as a function of variable dilatancy
coefficient. Parameters are determined by inverse fitting of
data from Figure 5b and 5d. (a) A′ is the effective value of
the direct effect, which controls the increase in shear
strength in response to a velocity step. (b) DC′ is the
effective value of the critical slip distance, the sliding dis-
tance over which friction evolves from one steady state to
another in response to a velocity step.

Figure 9. Effective alteration of the friction constitutive
parameters A and DC as a function of decreasing gouge layer
permeability. Parameters are determined by inverse fitting
of data from Figures 4b and 4d. (a) The parameter A′ is
the effective value of the direct effect, which controls the
increase in shear strength in response to a velocity step.
(b) DC′ is the effective value of the critical slip distance,
the sliding distance over which friction evolves from one
steady state to another in response to a velocity step.
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and DC′ = 66 mm using Ruina evolution. Again that DC′ is
larger using the Ruina law is consistent with the time‐
dependent flow of fluid into the fault zone and the general
behavior of the Ruina law.
[45] Finally, we varied the magnitude of the increase in

shearing velocity (vlp) of the fault zone, in all cases the
initial shear velocity is 10 mm/s, we then increase the
velocity to 30, 100, 300, or 1000 mm/s. We used k =
10−19 m2 and " = 5 × 10−4 for all simulations, and found
significant dilatancy hardening all vlp. At vlp = 30 mm/s A′
equals 1.7 and 1.9 MPa for the Dieterich and Ruina laws,
respectively; both cases are well above the drained value
of 0.15 MPa. DC′ at vlp = 30 mm/s is also above the input
value, 49 mm for Dieterich evolution and 59 mm for
Ruina evolution (Figure 11). At vlp = 1000 mm/s A′ is
3.6 MPa for Dieterich and 4.2 MPa for Ruina. DC′ is larger

for Ruina at all velocity steps for reasons we have previously
described, growing to 871 mm at vlp = 1000 mm/s and only
332 mm using Dieterich evolution. Again it is the time
dependency of the decay of shear strength that leads to the
extremely large values for DC′ for Ruina evolution, even as
compared to Dieterich evolution.

3.6. Phase Plane Analysis
[46] We present a phase plane analysis of the data in

sections 3.1 to 3.3 (Figures 12–14); such plots are particu-
larly useful in illustrating the progression of shear stress as
the shearing velocity accelerates from v0 to vlp. For variable

Figure 11. Effective alteration of the constitutive para-
meters A and DC as a function of increasing load‐point
velocity. Parameters are determined by inverse fitting of
data from Figure 6b and 6d. (a) A′ is the effective value of
the direct effect, which controls the increase in shear
strength in response to a velocity step. (b) DC′ is the
effective value of the critical slip distance, the sliding dis-
tance over which friction evolves from one steady state to
another in response to a velocity step.

Figure 12. Phase plane analysis of the data from Figures 4b
and 4d. Increase in shear strength (normalized by the
direct effect) is plotted as a function of the slider velocity
as it accelerates from v0 to vlp. Steady state line indicates
the steady state shear strength for velocity steps of any
given size for the case (a‐b) = −0.0005. (a) Dieterich style
state evolution over the permeability range 10−15–10−21 m2.
(b) Ruina style state evolution.
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permeability and dilatancy coefficient the phase plane plots
provide further indication of how similar the shear strength
evolution is for the two state evolution schemes (Figures 12
and 13), whereas Figure 14 shows that there is a fairly sig-
nificant difference between the schemes when comparing the
evolution of shear strength for velocity steps of differing
size. In Figures 12–14 the results using Dieterich state evo-
lution are shown at the top and Ruina evolution is shown at
the bottom. The thin dashed line represents the steady state
reduction in shear strength that results from the velocity
weakening parameters we chose: (a‐b) = −0.0005. For a
threefold increase in sliding velocity when " = 5 × 10−4,
shear stress evolution behaves in a nearly completely drained
manner when permeability is at least 10−17 m2 for both styles
of state evolution. At permeabilities lower than 10−17 m2 the

shear stress is increased over a drained layer, and it appears
that the layer begins to be depressurized when ln(v/v0)≈0.5
or in this specific case when the velocity has reached about
16 mm/s, on the way toward 30 mm/s (Figure 12). Com-
parison of Dieterich and Ruina style state evolution over a
dilatancy coefficient range from 10−5 to 10−3 indicates that
the differences based solely on style of state evolution are
small, beyond simply the increased magnitude of dilatancy
hardening experienced under the Ruina law (Figure 13). We
use vlp = 30 mm/s in all cases when varying the dilatancy
coefficient, and k = 10−19 m2. As the shear velocity of the
fault zone accelerates from v0 to vlp, the velocity at which
significant dilatancy hardening begins is decreased at higher
values for ". When " ≤ 3 × 10−5 there is no obvious change

Figure 13. Phase plane analysis of the data from Figures 5b
and 5d. Steady state line indicates the steady state shear
strength for velocity steps of any given size for the case
(a‐b) = −0.0005. (a) Dieterich style state evolution over
the dilatancy coefficient range 10−5–10−3. (b) Ruina style
state evolution.

Figure 14. Phase plane analysis of the data from Figures 6b
and 6d. Steady state line indicates the steady state shear
strength for velocity steps of any given size for the case
(a‐b) = −0.0005. (a) Dieterich style state evolution for
velocity steps from 10 mm/s to 30, 100, 300, or 1000 mm/s.
(b) Ruina style state evolution.
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from a layer that behaves in a drained manner, but beginning
at " = 10−4 the velocity at which the fault zone begins
to depressurize decreases from ∼22 mm/s to ∼13 mm/s at
" = 10−3.
[47] Increasing the size of the step in load‐point velocity

results in interesting differences between the Dieterich and
Ruina styles of state evolution (Figure 14). The thin dashed
line shows the steady state decrease that is expected in shear
strength as a result of any given size of velocity increase and
is again indicative of the velocity weakening nature of the
model we have created. These plots are of particular interest
because they show a subtle difference between the two
styles of state evolution. For any given increase in load point
velocity depressurization of the layer begins at a lower
velocity for Ruina state evolution than for Dieterich evolu-
tion. Bayart et al. [2006] indicate that for large velocity
steps (vlp ≈ 100v0) the Ruina formulation of state evolution
provides a much more accurate representation of the
response of friction to velocity steps, and in a similar way
the results presented here in Figure 14, could allow for the
tuning of a physical experiment that may shed light on the
superiority of one state evolution formulation over the other.

4. Discussion

[48] In order for a fault zone to be capable of hosting
unstable stick‐slip sliding, two conditions must be met. First
is that upon an increase in shearing velocity the new steady
state shear strength of the fault zone must be lower than
prior to the increase, i.e., dtss/dv < 0 [Dieterich, 1978, 1979;
Ruina, 1983]. In cases where dtss/dv > 0 a fault zone will
slide stably. The first instability condition dtss/dv < 0 is met
in all cases in the numerical results presented here because
we dictated that (a‐b) < 0. As long as a fault zone is not
completely undrained, dilatancy hardening only delays the
onset of velocity weakening in a fault zone, it does not
change velocity weakening into velocity strengthening.
[49] The second condition is based upon the elastic stiff-

ness of the loading system. Unstable frictional slip requires
that the stiffness of the loading system (Ks) be lower than a
threshold value Kcr given by the constitutive response. In
the case of our simulations Ks is far higher than Kcr for all
simulations, but when Ks < Kcr, the shear strength of the
fault zone is able to drop faster than the applied elastic
load. During the period when the load provided by the
spring is greater than the shear strength of the fault zone,
the slider will accelerate until such time as the loading sys-
tem and the frictional strength have balanced one another and
the slider comes to a stop or at least returns to its preinst-
ability shearing velocity. Kcr is therefore controlled by the
distance over which shear stress evolves from one steady
state to another upon an increase in shearing velocity and
also on the need to overcome the peak shear strength after the
onset of the faster shearing velocity:

Kcr ¼
#′ b$ að Þ

DC
1þ mv20

#′aDC

' (
¼ B$ A

DC
þ B$ Að Þmv20

AD2
C

; ð22Þ

where m is the mass of the slider. This formulation of the
critical stiffness (Kcr) takes into account inertial effects,
which can be removed by allowing m = 0, simplifying
equation (22) to the formulation presented by Segall and

Rice [1995] Kcr = s′ b$a
Dc

% &
, though doing so would negate

the contribution of a high peak shear strength [e.g., Roy and
Marone, 1996] to the effective alteration of Kcr. Our
numerical model shows that, as a result of quasi‐undrained
dilatancy, the effective rate and state parameters A′ and DC′
are increased beyond what they would be in a fully drained
fault zone. Even at a relatively slow slip velocity of 30 mm/s,
DC′ is effectively increased 80 times, from 25 mm to 2.1 mm
(using Ruina evolution), and A′ from 0.15 to 4.8 MPa in a
very low permeability fault zone. As a result of these in-
creases, the critical stiffness of the loading system becomes
much smaller as both A′ and DC′ are in the denominator of
equation (22). As the critical slip distance becomes increas-
ingly large in a nearly undrained fault zone, the inertial
portion of equation (22) is of vanishing importance as DC is
squared in the denominator. In the most extreme case pre-
sented here (k = 10−21 m2) the inertial term of equation (22) is
nearly 200,000 times smaller than in a completely drained
fault zone, solely due to the effective increase in A′ and DC′.
Even ignoring the inertial term, our numerical results suggest
the need for a loading system that is 80 times more compliant
than in a drained fault zone because of the increase in DC′.
Previous analyses [Rudnicki and Chen, 1988; Segall and
Rice, 1995; Garagash and Rudnicki, 2003a, 2003b] indi-
cate that pore fluid depressurization driven by fault zone
dilatancy favors stable sliding over unstable stick‐slip. The
analysis presented here infers that nucleating dynamic
earthquake slip within a region where dilatancy hardening is
efficient would prove difficult at least in part due to effective
increases in the rate and state friction constitutive parameters
and associated alteration of the effective critical stiffness
(Kcr′). Arguments have been made that seismicity varies with
depth due to changes in the combined rate and state friction
parameter (a‐b) which can vary with depth from (a‐b) > 0 at
shallow depths where fault wear material is unlithified,
grading to (a‐b) < 0 at seismogenic depths where there is
increased lithification of the fault gouge, and finally where
(a‐b) is once again greater than zero at extreme depths where
crystal plasticity promotes stable sliding [Scholz, 1998;
Saffer and Marone, 2003]. There could likewise be changes
in the drainage state of fault zone with depth or lateral extent,
leading to areas where dilatancy hardening is so efficient that
earthquakes simply cannot nucleate leading to a stably
creeping fault. Additionally, such regions of efficient dilat-
ancy hardening would tend to arrest the propagation of shear
rupture, similar to those regions described as conditionally
stable by Scholz [1998]. This type of spatial complexity in
fault zone drainage state was shown to result in realistic
spatiotemporal complexity in earthquake nucleation in the
numerical analyses of Hillers et al. [2006] and Hillers and
Miller [2006, 2007] on simulated dilatant fault zones with
spatial variations in fault constitutive parameters and was in
part attributed to large values of DC, which we have shown
can be effectively produced by efficient dilatant hardening,
leading to increases of several orders of magnitude.
[50] For simulations involving variable permeability and

velocity step size (Figures 4 and 5) the periodic ringing that is
evident (particularly when k = 10−19 m2 and vlp = 30 mm/s) is
damped as the permeability is further decreased or the
velocity step size is increased. This is largely due to the fact
that the shear stress evolution is only partially elastic, and
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once the drainage of the layer becomes the dominant mech-
anism of shear stress evolution such elastic ringing is damped.
However, in the case of variable dilatancy coefficient, the
ringing becomes more pronounced as " is increased, the
enhancement seems to be a result of the coupling of velocity
evolution and the dilatancy coefficient in determining the
porosity of the fault zone. As the slider accelerates, it elasti-
cally overshoots the load‐point velocity, causing strong
decompression of the pore fluid; consequently, as the slider
decelerates back toward vlp, the pore fluid is compressed
further, slowing the slider to a value less than vlp. This process
is exacerbated by large values for " because of the direct
coupling between the dilatancy coefficient and the magnitude
of porosity change (Figure 8).
[51] The increases in A′ and DC′ are shown here to be so

large that it becomes difficult to imagine earthquakes
nucleating in any fault zone, particularly considering that
our velocity steps were from 10 to 30 mm/s in most cases. At
k = 10−21 m2 the fault zone is depressurized to nearly 90% of
DPmax as a result of a threefold increase in shearing
velocity. As vlp reaches seismic rates (∼1 m/s → vlp/v0 =
105), DPmax becomes so large (Figure 15) that a completely
depressurized fault zone is reasonable, leading to an effec-
tive increase in both A and DC so large that nucleation of
instabilities is nearly impossible to imagine. Since earth-
quakes do occur, however, there must be some other way of
dissipating shear stress rapidly enough to result in a critical
stiffness that could allow stick‐slip unstable sliding, perhaps
through thermal pressurization of the pore fluid [Bizzarri
and Cocco, 2006a, 2006b; Rice, 2006; Segall and Rice,
2006], enhanced along‐strike permeability, or possibly
through a transient change in the location of the slip surface
from the center to the edge of the fault core as decreased
fluid pressure strengthens the innermost regions of the fault
core.
[52] Finally, it is worth noting that our simulations may

provide some reasoning behind the discrepancy between

laboratory and field estimates of the critical slip distance.
Experimental studies of DC are typically in the range of
1–200 mm [Marone et al., 1990; Mair and Marone, 1999],
whereas Scholz [1988b] suggested the critical slip distance of
natural faults to be approximately 10−3 to 10−2 m based on
estimates of fault roughness. Our results show that under
very poorly drained conditions (k < 10−19 m2) the critical slip
distance in an experimental fault zone could effectively
approach the values suggested by field observations.

5. Conclusions

[53] Our work builds on previous studies involving
complex simulations of the stability of dilatant fault zones.
We provide a detailed analysis of the effective rate and state
friction parameters A and DC as a function of changes in the
drainage state of a simulated experimental fault zone
enforced by changes in fault zone permeability (k), dilatancy
coefficient ("), and step increases in shearing velocity (vlp).
We find in all cases that reducing k or increasing " or vlp
leads to a progressively more poorly drained fault zone
resulting in effective increases in the rate and state para-
meters A and DC via the process of dilatancy hardening.
The increase in these constitutive parameters has the effect
of reducing the critical stiffness of fault zones to the point
that nucleation of earthquakes in, or the propagation of
earthquakes through, poorly drained regions of faults is
severely inhibited. Our work shows that mechanisms other
than effective stress changes may be needed to reduce fault
strength during earthquake nucleation.
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