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Constraints on compaction rate and equilibrium
in the pressure solution creep of quartz aggregates and fractures:
Controls of aqueous concentration
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[1] A relationship is developed to examine dissolution precipitation creep in crustal rocks
with implicit coupling of the dissolution‐diffusion‐precipitation system and without
requiring the iterative solution of a linear equation system. Implicit control is maintained
over aqueous silica concentrations within hydrated solid contacts and in open pore space.
For arbitrary conditions of temperature, pressure, and mechanical stress, the simple
equation system conforms to a polynomial solution for aqueous concentrations set within a
small iterative compaction scheme. Equilibrium (long‐term) pressure solution compaction,
previously ill constrained, is explored with two alternate methods: (1) a modified form
of critical stress and (2) rate‐controlled growth of diffusion limiting cement at the periphery
of solid contacts. Predictions are compared to previous experimental results that allow
compaction equilibrium to be achieved. Only the modified critical stress is capable of
reproducing these results. In this case the agreement is strong across a range of conditions
(400°C–500°C, 20–150 MPa, and 3–120 mm mean particle diameter). Compaction rates
are overestimated in very early times in a manner suggesting the importance of plastic flow
during this period. Predictions are also compared to concentration independent
simplifications at general conditions of 350°C and 50 MPa. Compared to the implicit
coupling, these methods represent the mean behavior, slightly underestimating rates in
dissolution control and slightly overestimating in diffusion control. Aqueous concentration
is influential in either regime. The solution is applicable to open and closed systems, is
extended to systems with boundary influx, and may be applied to granular media or
fractures, differing only in the method defining evolving contact geometry.

Citation: Taron, J., and D. Elsworth (2010), Constraints on compaction rate and equilibrium in the pressure solution creep of
quartz aggregates and fractures: Controls of aqueous concentration, J. Geophys. Res., 115, B07211, doi:10.1029/2009JB007118.

1. Introduction

[2] Intergranular pressure solution is an important chemo‐
mechanical creep process in crustal rocks. In rock fractures
and porous aggregates, mechanical load is concentrated at a
finite number of contact points, and if these locations are
hydrated by a thin water film [Revil, 2001; Rutter, 1976;
1983; Weyl, 1959] and/or by a dynamic island‐channel net-
work [Lehner, 1995; Raj, 1982; Schutjens and Spiers, 1999],
then the activity of stressed minerals in contact with the fluid
is elevated. Under these conditions, enhanced dissolution
and supersaturation within the contact are thermodynami-
cally favored [De Boer, 1977; Paterson, 1973]. A chemical
potential gradient may then evolve for the diffusive migra-
tion of aqueous species across the grain boundary for eventual

precipitation to hydrostatically stressed pore walls. Com-
bined, these serial processes lead to porosity and permeability
reduction by compaction of the solid and infilling of voids,
providing a potentially important contribution to diagenesis
and fault healing [Sleep, 1995; Tada and Siever, 1989;
Yasuhara et al., 2005] and the evolution of engineered, frac-
tured reservoirs [cf. Taron and Elsworth, 2009].
[3] Despite many previous attempts to model the serial

pressure solution mechanism, a fully predictive model remains
elusive. Several schemes have been proposed to extend pre-
dictive capability beyond a given experiment [Dewers and
Ortoleva, 1990b; Gunderson et al., 2002; He et al., 2002;
Lehner, 1995; Renard et al., 1997; Renard et al., 1999; Revil,
1999; 2001; Yasuhara et al., 2003]. In most cases it is nec-
essary to assume a priori whether diffusion or dissolution is
the rate‐limiting step, or to allow a smooth transition between
these processes. Gunderson et al. [2002] presented a fully
mechanistic model with implicit coupling between dis-
solution, diffusion, and precipitation. Yasuhara et al. [2003]
introduced an approach for the implicit coupling that did
not require an iterative solution of a larger linear equation
system, but in doing so, some control was lost over the
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chemical potential gradient for diffusion, leading to over-
estimation of interfacial concentrations and diffusion rates.
[4] In all cases the mechanism leading to the cessation of

pressure solution at some final, nonzero value of porosity
remains poorly constrained [Revil et al., 2006; van Noort
et al., 2008b]. Other models of interest include the cemen-
tation model of Walderhaug [1996] and the (“plastic”) total
expended energy model of Stephenson et al. [1992]. Each of
these studies has provided valuable insights into pressure
solution theory that contribute strongly to the mechanism
proposed herein.
[5] Following the approach of Yasuhara et al. [2003], a

simple finite element equation system is proposed to examine
the three serial processes of pressure solution. It is shown
that with a slightly fuller thermodynamic treatment, com-
plete control can be maintained on interfacial and pore fluid
aqueous concentrations without the iterative solution of a
linear equation system. The solution is applicable to open
and closed systems and to granular aggregates or fractures.
Sections 3–4 present the derivation of this model. Final
compaction magnitudes are examined utilizing the concept
of “critical stress,” first proposed by Stephenson et al.
[1992], and grain periphery healing (as neck growth) as dis-
cussed by, for example, Visser [1999] and van Noort et al.
[2008b] by allowing rate‐dependent deposition of support-
ing cement around grain boundaries. Results are compared
to experimental observations [Niemeijer et al., 2002; van
Noort et al., 2008a] on granular quartz that allow compac-
tion to achieve a final equilibrium.

2. Note on Stress Corrosion

[6] Both pressure solution and stress corrosion [Atkinson,
1984; Dove, 1995] (the chemical erosion of microcrack tip
strength) have been shown to exhibit behavior in agreement
with the rate and activation energy of chemical dissolution
[Dewers and Hajash, 1995; Schutjens, 1991], and so it is
often difficult to distinguish the contribution of each process
through macroscopic observations. At higher temperatures
and pressures (>400°C and >50 MPa), pressure solution may
generally dominate behavior [Niemeijer et al., 2002;Tenthorey
and Cox, 2006]. At lower temperatures (150°C–250°C and
>30 MPa), however, results are mixed and conflicting (see
detailed discussion in the study of Chester et al. [2007]). A
common consensus [e.g., Schutjens, 1991] is that there exists
a transitional period (∼150°C–200°C) where pressure solu-
tion becomes an active process. Below this value, only sub-
critical crack growth is thermodynamically favored, and
above it, pressure solution eventually dominates [Chester
et al., 2007; Dewers and Hajash, 1995; Schutjens, 1991].
This paper focuses on the detailed mechanism of pressure
solution and examines conditions well in excess of the sus-
pected transitional stage. See Yasuhara and Elsworth [2008]
for a recent attempt to combine both processes.

3. Thermodynamic Potential and the Rate
Equations

[7] This section presents the fundamental thermodynamic,
kinetic, and diffusive relationships for our composite model.
The form is presented as briefly as possible to avoid
redundancy with available literature. The novelty of this

section rests in the use of equation (10) rather than the usual
approximation of equation (11) to represent the rate of
dissolution within stressed granular contacts, thus, main-
taining dependence on aqueous chemical concentrations.
Fick’s law for diffusion is solved for boundaries of constant
flux within intergranular contacts, although alternate bound-
ary conditions produce only slightly different results. All
geometric parameters are derived in terms of a representative
elementary volume (REV) for physical clarity. The resulting
quantities are relative, such that the initial volume, V0,
assigned to the REV is arbitrary.

3.1. Contact Area

[8] The response of both compacting fractures and granular
aggregates may be accommodated through a common con-
sideration of evolving contact area. In bare fractures, two
opposing fracture planes are held apart by deformable
asperities, where effective stress concentrates as a function of
real contact area. The contact area ratio is the relationship
between real area of contact (summed over all contacting
asperities) to total square area (over which a load is applied),
Rc = Ac/AT. In granular aggregates, although typically
referred to as contiguity, 8, the meaning is transferrable, and
refers to the fraction of total granular surface area that is in
contact ((1 − 8) is wetness). By continuity of stress, the load
supported at contacts is sa = s′/Rc = s′/8, where s′ is effective
stress (s′ = s − p), with stress positive in compression.
Holding with previous terminology, sa is the disjoining
stress, although here sa is defined as an effective stress.

3.2. Grain Boundary Structure

[9] The geometric structure of evolving grain boundaries
remains a subject of debate. Revil [2001] suggests that
repulsive steric forces are sufficient within grain boundaries
to sustain a thin film thickness of several nanometers, and
the recent quartz indenter experiments of Gratier et al.
[2009] observed behavior consistent with a thin film thick-
ness of 2–10 nm. Karcz et al. [2008] conducted halite indenter
experiments and visually observed dynamic changes to the
grain boundary, where Rc at a single contact may vary from
20% to 70% (for s′ ≈ 7–30 MPa) and evolves throughout
the course of a single experiment. Similar evolving contact
fraction was observed in the halite experiments of de Meer
et al. [2005]. Karcz et al. [2008] suggests that this behavior
can be explained by a combination of pressure solution,
plastic flow, and undercutting around the contact periphery.
It is unclear how such plastic flow behavior will translate to
silica, exhibiting a much higher compressive strength, but it
will most certainly play some role in the compaction pro-
cess. Additionally, there is some debate surrounding the
thermodynamic stability of so‐called island and channel
models [Lehner, 1995; Raj, 1982; Schutjens and Spiers,
1999; van Noort et al., 2008b], although remnants of such a
structure have been observed visually in the study, for
example, by Cox and Paterson [1991] for quartz materials. It
is reasonable to suspect that all of these behaviors are real and
may be present and that the ability of a given pressure solution
model to reproduce laboratory data stems from its ability to
represent mean behavior, in all cases signified by the reaction
rate of stressed silica.
[10] In island and channel models, Schutjens and Spiers

[1999] (and others) introduce the parameter a, representing
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the fraction of the grain boundary occupied by solid con-
tacting islands. A complete island‐channel model is not
considered here, but some the effects of a nonuniform gran-
ular contact may be taken into account by considering gen-
erally how such a structure modifies contact area and stress
concentration.
[11] While a is poorly constrained and the processes

leading to its evolution complex, the laboratory results of
Karcz et al. [2008] and Cox and Paterson [1991] indicate
that the most unreasonable assumption is that intergranular
contacts ever exhibit a = 1 (even at very high stress and
temperature [Cox and Paterson, 1991]). Our modeling sug-
gests a in the range 0.3–0.4 for the variable conditions
examined below, which is in reasonable agreement with the
discussion above. In all results presented here, a is assumed
to be a constant with a value of 0.30. Setting a = 1 in all
equations that follow would negate its effect.

3.3. Chemical Potential

[12] As derived bymany previous authors, the driving force
for pressure solution is represented as the chemical potential
difference between a stressed contact and a hydrostatically
stressed open pore [De Boer, 1977; Heidug, 1995; Kamb,
1959; Lehner, 1995; Paterson, 1973]

D� ¼ �aVm

�
þ Df � US; ð1Þ

where the surface energy term [Heidug, 1995],

US ¼ 2H�G; ð2Þ

Vm is the molar volume, Df is the molar Helmholtz free
energy difference, and surface energy includes the local solid/
fluid interface curvature, H, and the Gibbs surface energy,
gG (numerically equivalent to the surface tension [Heidug,
1991]). Helmholtz energy includes contribution from elastic
strain energy and dislocation energy, Df = UE + UD. The
molar elastic strain energy is given approximately by

UE � Vm
�2
a

2Em�2
ð3Þ

[De Boer, 1977; Paterson, 1973], where Em is Young’s
modulus. For reasonable values of mineral compliance, the
contribution from strain energy is strongly overshadowed by
P‐V work (first term in equation (1)) [see also Paterson,
1973], and some numerical estimations of the contribution
from elastic strain, dislocation, and the surface energy term
are discussed in the study of, for example, Renard et al.
[1999].

3.4. Rate Equation Formalism

[13] A general geometric idealization of the pressure
solution process is provided in Figure 1. Dissolution/
precipitation of silica in the intergranular film and open
pore space follows the simple elementary reaction,

SiO2 sð Þ þ 2H2O , H4SiO4 aqð Þ: ð4Þ

A more accurate reaction mechanism would include the
precipitation/dissolution of a quartz/amorphous silica system.
This first analysis utilizes a composite reaction system, where
reaction rates represent the bulk behavior of all silica com-
pounds. Hydrostatic solubility of silica is extracted directly
from the study ofRimstidt and Barnes [1980], while a slightly
higher (compared to their work) dissolution rate constant is
adopted; 5.04 × 10−14 mol m−2 s−1 at 25°C, with an activation
energy of 67.4 kJ/mol. A comprehensive review of literature
reaction rates for quartz is given by Bandstra et al. [2008].
[14] The equilibrium constant for this reaction is

Keq ¼ aH4SiO4

aSiO2aH2O
: ð5Þ

At chemical equilibrium in the unstressed pore space, the
activities of both water and unstressed solid silica are assumed
unity, so that the equilibrium constant may be simplified and
related to the equilibrium solubility as

Kh
eq ¼ aH4SiO4 ¼ �hCh

eq; ð6Þ

where superscript, h, refers to the hydrostatic state, g is the
activity coefficient, and Ceq

h is the solubility of aqueous silica.
For equation (6) to hold, solubility requires units of molar
fraction. In all remaining equations, concentrations and activ-
ities appear in ratios, thus, allowing SI units of concentration
(mol · m−3). Utilizing the definition of chemical potential,
m = m* + RT ln(a), the relationship between hydrostatic
solubility and the solubility under elevated stress is

��C�
eq ¼ �hCh

eq exp
D�

RT

� �
ð7Þ

Figure 1. Conceptualization of the chemical compaction
process, porous media, and fractures.
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[Paterson, 1973], where the superscript, s, refers to a state
of nonhydrostatic stress (h is hydrostatic), and the last term
represents the activity of solid silica under stress

aSiO2 ¼ exp
D�

RT

� �
ð8Þ

[De Boer, 1977; Dewers and Ortoleva, 1990a; Shimizu,
1995]. This relationship conveys the stress dependence of
solid chemical potential (for the stressed solid in equilibrium
with its fluid), visited in solubility (equation (7)) and reaction
rate (equation (9)). When no excess chemical potential exists
for the solid (in the hydrostatic pore space), solid activity
approaches unity. Following from equation (9), simplifica-
tions of equation (8) produce the most common representa-
tion of stress‐enhanced reaction rate, that of equation (11).
See Dewers and Ortoleva [1990a] and De Boer [1977] for
more detailed derivations. The general form for reaction rate
is (positive for dissolution)

_mrx mol s�1
� �¼ kþ�ArxaSiO2 1� aH4SiO2

Kh
eqaSiO2

 !
ð9Þ

[Dewers and Ortoleva, 1990a; Rimstidt and Barnes, 1980;
Shimizu, 1995], where k+ [mol m−2 s−1] = Keq

h k− is the for-
ward (dissolution) rate constant and Arx is the reaction area
(modified by fractional area of the contact, a). Substituting
equation (8) into (7) and the result into equation (9) (second
bracketed term) and assuming that activity coefficients can
be neglected as unity produces the rate equation for mass
flux within the intergranular (subscript i) contacts,

_mrx
i ¼ kþ�Arx

i aSiO2 1�
~Ci

C�
eq

 !
; ð10Þ

where ~Ci is the mean current concentration of aqueous silica
in the intergranular fluid film, Ai

rx is the total (nominal)
geometric surface area within (REV) intergranular contacts.
Referencing equations (7) and (8),Ceq

s = aSiO2
Ceq
h . In practice,

it is difficult to produce an analytical relationship capable of
tracking time‐dependent aqueous concentrations, and so,
two approximations are enacted. The first assumes aSiO2

=
exp(Dm/RT) ≈ Dm/RT + 1. Second, although the thermo-
dynamic derivations follow an alternate approach (see, for
example, Lehner [1995]), the dependence on ~Ci is relieved
by the assumption ~Ci/Ceq

h = 1. These substitutions produce

_mrx
i � kþ�Arx

i

D�

RT
; ð11Þ

which is the widely used rate equation for dissolution within
a stressed contact. Substituting for sa = s′(AT/Ai

rx) and
approximating Df by equation (3),

_mrx
i ¼ kþVm

RT
�0AT þ �0ATð Þ2

2�Arx
i Em

� US

�Arx
i

 !
; ð12Þ

which shows that all contact area, Ai
rx, and roughness, a,

dependence is contained within the strain energy and surface

energy terms. Therefore, if US is small relative to saVm +Df,
the dissolution rate at granular contacts will not change as a
function of continued interpenetration. This problem, which,
for a thin film model, excludes the possibility of compaction
equilibrium for reasonable values of Df and US, is discussed
further in section 5. The mechanism presented below utilizes
equation (10) directly rather than equation (11), retaining the
dependence on evolving concentrations.
[15] Reaction rate in the hydrostatic pore space (subscript,

p) can be extracted from equation (10) by allowing aSiO2 = 1
and removing a,

_mrx
p ¼ kþArx

p 1�
~Cp

Ch
eq

 !
; ð13Þ

where Ap
rx is total (nominal) available surface area within

the pore space, ~Cp is the mean current concentration at the
periphery of the grain (the pore space), and, as above, the
result is positive for dissolution. In the full iterative scheme,
both Ap

rx and Ai
rx evolve in time with the progression of

asperity or grain surface interpenetration. They represent
total reactive areas within the REV.

3.5. Intergranular Diffusion

[16] Molecular diffusion of solute mass occurs over a
chemical potential gradient, represented here by concentration.
Under constant material flux, F, the cylindrical diffusion/
conduction equation takes the form

F ¼ �Df
1

r

d

d r
r
dC

d r

� �
ð14Þ

[Carslaw and Jaeger, 1959, equation 7.14] (Poisson’s
equation) within an infinite circular cylinder of radius, r,
and for the molecular diffusivity, Df . The solution for radial
distribution of concentration within the cylinder (from r = 0
to r = a) is

C rð Þ ¼ Ca þ F

4Df
a2 � r2
� �

: ð15Þ

[Carslaw and Jaeger, 1959, equation 7.17]; equation (15)
admits a quadratic concentration profile from the center,
r = 0, to periphery, r = a. Integrating this relationship from
r = 0 to r = a and then averaging the (resulting) concen-
tration across the surface (pa2) yields, in terms of the mean
concentrations,

F ¼ 8Df
~Ci � ~Cp

� � ð16Þ

[Lehner, 1995] for the flux per unit length of the cylinder.
Equation (16) is modified further by Lehner [1995] in a
manner that removes the direct dependence on transient
concentration (see also Rutter [1976]). As we will use this
equation directly, no further modification is required. Alter-
nate boundary conditions (such as constant concentration at
grain boundary center) produce a slightly different geometric
factor.
[17] Equation (16) represents diffusive flux at a single

granular contact while equations (10) and (13) were derived
for total flux in the REV; agreement requires multiplication
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by the number of granular contacts within the REV, Ai
rx/2ag

(reduced by 2 surfaces per contact), to give

_mdiff mol s�1
� � ¼ 8Df! ~Ci � ~Cp

� � � Arx
i

2ag
; ð17Þ

where multiplication by the grain boundary width, w,
reduces the unit length cylinder to the thickness of the inter-
granular film and ag is the current mean contact radius (of
each contact).
[18] The behavior of intergranular molecular diffusion is

discussed in detail by, for example, Revil [2001]. Molecular
diffusivity, Df , is given by the Stokes‐Einstein equation,

Df ¼ kT

6���
; ð18Þ

for the Boltzmann constant, k = 1.38 × 10−23 m3 Pa s−1,
water viscosity, h, at temperature, T, and with the diameter
of a molecule of hydrated silica, d ≈ 0.5 nm [Renard et al.,
1999]. Note that in experimental studies, it is difficult or
impossible to measure Df directly, but rather, it is the pro-
duct Dfw that is measured.

4. Composite Mass Balance

[19] Utilizing equations (10), (13), and (17), and referenc-
ing Figure 1 (single element formulation), mass balances on
the intergranular space and the open pore, respectively, pro-
duce the relationships

_CiVi ¼ kþ�Arx
i aSiO2 1�

~Ci

aSiO2C
h
eq

 !
� D ~Ci � ~Cp

� � ð19Þ

_CpVp ¼ kþArx
p 1�

~Cp

Ch
eq

 !
þ D ~Ci � ~Cp

� �
: ð20Þ

Here Vi = wAi
rx/2 is total REV volume within the grain

contacts, Vp = 	V is total REV pore volume, the overdot
refers to the time rate of change of the given quantity, and

D ¼ 8Df! � Arx
i

2ag

� �
: ð21Þ

Combining equations (19) and (20) produces the linear
system (by redistributing source terms),

kþ�Arx
i aSiO2

kþArx
p

( )
¼ Vi 0

0 Vp

� 	 _Ci

_Cp

( )

þ D

kþ�Arx
i

DCh
eq

þ 1

 !
�1

�1
kþArx

p

DCh
eq

þ 1

 !
2
666664

3
777775

Ci

Cp


 �
:

ð22Þ

Equation (22) mimics the general finite element formalism,
q = V _C + KC, which admits the implicit solution, Ct+Dt =
K þ 1

DtV
� ��1

qþ 1
DtVCt

� �
. Performing the multiplication

yields,

Ci

Cp


 �
tþDt

¼ D

kþ�Arx
i

DCh
eq

þ 1

 !
þ Vi

Dt
�1

�1
kþArx

p

DCh
eq

þ 1

 !
þ Vp

Dt

2
666664

3
777775

�1

t

�
kþ�Arx

i aSiO2 þ
ViCi

Dt

kþArx
p þ VpCp

Dt

8><
>:

9>=
>;

t

ð23Þ

Because this solution is fully implicit in time, the mass of
silica removed from intergranular contacts over a single
time step is not directly recovered from equation (23) (as
would be the case in an explicit solution). This quantity,
which is necessary to obtain the rate of grain convergence
over a time step, may be obtained from equation (22) in a
way that maintains the implicit accuracy. Rearranging the
finite element solution: q − KCt+Dt = 1

DtV[Ct+Dt − Ct].
Performing the matrix multiplication and solving for the
complete source term, _mi

rx = k+aAi
rxaSiO2

(1 − Ci/Ceq
s ), shows

that, once the concentrations at time t +Dt from equation (23)
are obtained, the mass removal resulting in grain convergence
over that time step is

DmSiO2
i ¼ _miDt ¼ Vi C

tþDt
i � Ct

i

� �þ D CtþDt
i � CtþDt

p

� 

Dt

ð24Þ

([moles SiO2], positive for grain convergent dissolution).
And likewise, for dissolution/precipitation in the pore space
(negative for moles precipitated in the pore),

DmSiO2
p ¼ _mpDt ¼ Vp CtþDt

p � Ct
p

� 

� D CtþDt

i � CtþDt
p

� 

Dt:

ð25Þ

For this single element solution, these results may also be
inferred by revisiting equations (19)–(20) with Ct+Dt given
by equation (23). For the two element solution presented
in Appendix B, it is necessary to perform this matrix
manipulation to obtain equivalent forms of equations (24)
and (25). The complete calculation sequence is shown in
Figure 2. The implicit solution is unconditionally stable.
However, all geometric identities (section 4.2) are updated
incrementally in time, and so, a reasonably small time
step is required. Time step sensitivity analyses were con-
ducted to ensure accuracy, withDt controlled adaptively and
defined to maintain grain convergence rate beneath a pre-
specified tolerance.
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4.1. Systems With Boundary Influx

[20] Assuming a steady state influx of boundary water,
Qss, and revisiting the pore fluid mass balance yields a
flowing system form of equation (20),

_CpVp ¼ kþArx
p 1�

~Cp

Ch
eq

 !
þ D ~Ci � ~Cp

� �� Qss
~Cp: ð26Þ

Combining equations (19) and (26) yields the open system
(analogous with equation (22)),

kþ�Arx
i aSiO2

kþArx
p

( )
¼ Vi 0

0 Vp

� 	
Ci

Cp


 �

þ D

kþ�Arx
i

DCh
eq

þ 1

 !
�1

�1
kþArx

p

DCh
eq

þ Qss

D
þ 1

 !
2
666664

3
777775

� Ci

Cp


 �
: ð27Þ

The implicit solution to this system is obtained by following
the same procedure as in the previous section. There are
many environments, such as open fracture systems, where
boundary influx may deplete pore fluid concentrations of
dissolved silica and thereby speed the rate of pressure solu-

tion convergence. Such environments would require the use
of equation (27) rather than equation (22).

4.2. System Geometry

[21] The change in mechanical aperture of the fracture
(mean separation between contacting fracture surfaces) over
a time step is obtained from

Dbm ¼ DmSiO2
i Vm

2Ai
rx

: ð28Þ

This differs from the so‐called hydraulic aperture (bh),
which relates to fracture permeability as k = bh

2/12 (cubic
law) and includes the effects of fracture roughness on fluid
flow. For such fracture systems, Ai

rx may be calculated from
an appropriate contact theory [cf. Brown and Scholz, 1986]
or through direct comparison of fracture profile data
[Yasuhara et al., 2004].
[22] For granular systems, additional considerations are

required. For isotropic compaction, the strained volume to
reference volume ratio is (referencing Figure 3)

V

V0
¼ ri � h

ri

� �3

; ð29Þ

positive for compaction and where h is cumulative granular
interpenetration, ri is the initial mean particle radius, and V0

and V are the initial and current REV volumes, respectively.
Rearrangement produces the relationship for finite volume
strain

"v � V0 � V

V0
¼ 1� 1� h

ri

� �3

ð30Þ

[Jaeger et al., 2007]. Cumulative interpenetration, h, is cal-
culated incrementally in time, beginning at 0 and incrementing
by Dh = (Dmi

SiO2Vm)/Ai
rx. Porosity evolution follows mass

balance within the REV. If porosity is uniform in space and
all pore space is fluid accessible then, by definition,

	 � 1� V T
g þ R

V
; ð31Þ

where Vg
T is cumulative grain volume in the REV and R is

the source/sink reaction term accounting for mass loss due
to dissolution at granular contacts and precipitation in the
open pore space. Total granular volume is Vg

T = V0(1 − 	0),
while REV volume V evolves in time through volume
strain, V = V0(1 − "v). Therefore,

	 ¼ 1� 1� 	0

1� "v
þ R

V0 1� "vð Þ
� 	

; ð32Þ

(see also [He et al., 2002]) with reaction volume given by
the time summation,

R ¼ Vm

X
t

DmSiO2
i þDmSiO2

p

� 

; ð33Þ

Figure 2. Calculation sequence for composite model
(single element solution, section 4).
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where both Dmi
SiO2 and Dmp

SiO2 were defined above as posi-
tive for dissolution. V0 is defined as unity, although a good
check against geometric construction is that an alternate
value for V0 does not alter simulation results. In a com-
pletely closed system, R → 0 such that no mass is removed
from the system but is only redistributed.
[23] Contact area between two interpenetrating spherical

particles is given by

ag ¼ �h 2ri � hð Þ: ð34Þ

We assume a granular material of loose random packing, a
more likely scenario than cubic or orthorhombic packing
that exhibits approximately Nc = 6 contacts per grain and an
initial porosity near 40% [Stephenson et al., 1992]. The
contact area ratio is therefore given by

Rc ¼ Ncag
Sag

; ð35Þ

where Sag is the initial surface area for each particle of mean
radius, ri. Other necessary quantities are specified in Table 1.

An assumption of cubic packing is not required. This con-
cludes the derivation of our implicit rate model.

5. Equilibrium Compaction

[24] Constitutive models of pressure solution that utilize
equation (11) are ill equipped to handle long‐term (complete
compaction) analyses. While equation (10) is better posi-
tioned for this purpose, significant problems remain. The
problem arises from a thermodynamic framework that pre-
dicts continued pressure solution until the stress state in the
solid matches that of the hydrostat. This, of course, is unlikely
and will almost certainly be usurped by the attainment of
zero porosity: from observations an apparently unlikely event.
Examination of equation (1) shows that the only preventative
barrier to this occurrence is the surface energy, US.
[25] However, for nominally flat contacts in a purely thin

film model, surface curvature H = 0, so that surface energy,
US = 2HgG, is identically zero. If surface roughness exists
within the contacts, such as for an island and channel model,
potentially reasonable values for surface energy are able
to reproduce observed compaction magnitudes provided

Figure 3. Diagram of compaction and relationship between granular and growing cement radius.

Table 1. Experimental Conditions

s′ a (MPa) Ta (°C) ri
a (mm) 	c − p

a (%) Kb
b (GPa) 	0

c (%) Rc
c,d (%)

qc212e 22 503 10 35.41 1.3 36.50 1.7
qc204e 51 410 10 38.16 1.3 40.59 3.9
qc213e 52 502 10 36.55 2.5 37.87 2.1
qc203e 52 506 10 35.58 1.4 37.97 3.7
qc05e 100 489 129.1 29.56 1.3 34.98 7.8
qc07e 100 489 3.1 41.09 1.3 46.98 10.2
cpf5f 50 500 20.5 26.12 0.7 31.80 7.8
cpf6f 100 400 20.5 25.14 0.9 33.46 11.3
cpf3f 100 500 23.5 27.31 1.3 33.13 8.1
cpf8f 100 500 15.5 31.08 1.4 34.07 7.2
cpf7f 100 600 21.6 31.38 1.5 35.96 6.7
cpf4f 150 500 21.5 29.39 1.7 29.39 9.0

aAs reported in the original work.
bAssigned in this work.
cCalculated.
dInitial contact area ratio (at 	c − p).
eExperiment of van Noort et al. [2008a].
fExperiment of Niemeijer et al. [2002].
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average grain boundary separation is sufficiently thin (∼5nm)
[i.e., van Noort et al., 2008b]. Heidug [1991, 1995] showed
that surface energy is dependent on (evolving) tangential
forces along the contact so that hydrostatically determined
values for surface tension may be underestimating the
retarding effect of surface energy. Alternatively, grain
boundary healing and diffusive resistance from precipitated
material at the periphery of grain contacts may have signifi-
cant retarding effects.
[26] The approach of Stephenson et al. [1992] and sub-

sequent applications [Revil, 1999, 2001; Yasuhara et al.,
2003] was to introduce a “critical stress” that represents
some final energy barrier to interpenetration. The phenome-
nological construction of Stephenson et al. [1992] represents
the total energy expended (which they referred to as “molar
displacement work”) over the complete life cycle of an inter-
penetration event in comparison to the amount of material
deposited as cement around an interpenetrating grain. Equi-
librium occurs at a predefined value of the burial constant, bc,
representing the relationship between total granular interpen-
etration, h, and the radial extent of deposited “supporting”
cement, rgc,


c ¼ rgc=ri
1� h=ri

ð36Þ

with both values referenced to the initial granular radius, ri
(Figure 3). The equilibrium value of stress when this is
achieved is sa

eq = scbc
2, where sc is the critical stress. Hence,

equilibrium is obtained when

�a ! �eq
a ¼ EA 1� T=TAð ÞNc 1� 	0ð Þ

4Vm

2
c ; ð37Þ

where TA is approximated as themelting temperature andEA is
approximated by the molar heat of fusion, for Nc ≈ 6 contacts
per grain, and the initial porosity, 	0. This result differs from
the adaptation of Revil [1999] and Yasuhara et al. [2003] by
maintaining the dependence on porosity, contacts per grain,
and importantly, bc. See Stephenson et al. [1992] for the der-
ivation of these parameters and a discussion of the terms TA
and EA. Note that equation (37) is derived from a granular
media geometry [see Stephenson et al., 1992] and that single
contact predictions (as in rough fractures) will differ in geo-
metric factor.
[27] This approach (of Stephenson et al. [1992]) is novel

in that it does not follow the form of equation (1), Dm =
saVm + Df − 2HgG, which is a statement of local, incre-
mental equilibrium (see for example, Lehner [1995]) but is a
statement of the total energy expended over a pressure solu-
tion life cycle, indexed to a final energy barrier, bc. Therefore,
bc is a total energy formulation for healing at the grain
periphery, resulting in increased contact area (support) and,
potentially, diffusive blockage. It may be of interest to
examine the brief discussion in the study of Lehner [1995]
regarding the “problem of Stefan” (Carslaw and Jaeger
[1959], chapter 12), which relates strongly to the pressure
solution mechanism and to the formulation presented by

Stephenson et al. [1992]. To represent this final equilibrium,
Yasuhara et al. [2003] suggests

D� ¼ �a � �eq
a

� �
�

Vm ð38Þ

as a modified form of equation (1), where sa
eq includes the

contribution from (positive) Helmholtz and (negative) sur-
face energy at final compaction. It is apparent from this
discussion that sa

eq should also represent energy contribution
from the supporting cement, a contribution that is other-
wise absent from equation (1). Inserting equation (38) into
equation (11),

_mrx
i ¼ kþArx

i

�a � �eq
a

� �
Vm

RT
: ð39Þ

This result (equation (39)), first derived in the study of Revil
[1999], allows dissolution to attain a final equilibrium
provided sa

eq is significant relative to sa, the dependence
on Arx

i is upheld. Following this approach, we substitute
likewise for equation (8),

_mrx
i ¼ kþ�Arx

i exp
�a � �eq

a

� �
Vm

�RT

� �
1�

~Ci

C�
eq

 !
: ð40Þ

Note that as long as a is considered to be steady state during
compaction, the approximations made on aSiO2

to achieve
equation (11) (and thus equation (39)) lead to cancellation of
a from the relationship. Therefore, contact fraction a can
only be considered in equation (40), where its dependence is
exponential.
[28] Note also that the method chosen to represent equi-

librium compaction is independent of the implicit rate for-
malism presented in sections 3–4. Should an alternate
representation be chosen to represent chemical potential (see
section 10, for instance), it is only required to insert this new
chemical potential into equation (8) and proceed as outlined
in sections 3–4.

6. Model Comparisons: Influence
of Concentration

[29] Figure 4 shows the results of the current model in
comparison to alternative derivations. Three alternative
models (m1, m2, and m3) are considered. The calculation
sequence developed in this paper (Figure 2) is represented by
model m1. Model m2 utilizes a simplified parallel dashpot
model for the transition from diffusion to dissolution limited
regimes and thus utilizes equation (39) rather than equation
(40). The molar viscous equations for dissolution and diffu-
sion, respectively, are [cf. Raj, 1982; Revil, 2001; Rutter,
1976],

qdiss ¼ kþ�Arx
i

Vm

RT
ð41Þ

qdiff ¼ 32Df!
Vm

RT
Ch
eq ð42Þ
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with total viscous behavior given by 1/qT = 1/qdiss + 1/qdiff,
and

DmSiO2
i ¼ qT

�a � �eq
a

� �
�

Dt: ð43Þ

Equation (41) is a restatement of our equation (11). All
variables are as defined above. The factor 32 in the diffu-
sion equation comes from additional thermodynamic con-
siderations on equation (16) [Rutter, 1976]. Model m3 uses
equation (39) only (does not consider diffusion). The fun-
damental difference between the models is the use of
equation (39) to represent intergranular dissolution in both
models m2 and m3 rather than the concentration dependent
equation (40) for m1 (with implicit, dissolution‐diffusion
coupling). Both m2 and m3 are concentration independent
and are unable to track pore precipitation. Therefore, pore
precipitation has been disabled in m1 for these comparisons.
This is equivalent to assuming a fully closed system, where
all material dissolved at contacts is simultaneously redis-
tributed to the open pore. Contact fraction a, as discussed in
the previous section, cannot be represented in model m3.
While the resistive formulation of m2 does allow contri-
bution from a, its behavior will be largely different than for
the exponential a dependence in m1.

[30] Figure 4a shows that, as expected, models m2 and m3
are identical when dissolution is dominant. A decrease in
diffusivity (Figure 4b) illustrates the difference between m2
and m3. In all cases, it is clear that the regimes are never
fully dissolution controlled (in the sense of being concen-
tration independent). Even when dissolution is clearly the
dominant mechanism (Figure 4a for instance, where m2 and
m3 are identical), the concentration‐dependent model, m1,
produces different results because interfacial concentration
affects the rate of dissolution. The effect of a is also dem-
onstrated in Figure 4a. While m3 is independent of this
parameter, m2 and m3 are significantly affected and in
fundamentally different ways. The concentration profiles of
Figures 4c and 4d (for model m1) show clearly the com-
petition between diffusion and dissolution.

7. Parameter Sensitivity

[31] Parametric analyses reaction rate and diffusivity are
provided in Figure 5. The importance of shifts in these
parameters is not independent of direction, as decreases in
rate constant and diffusivity hold a much stronger sway on
compaction than does a corresponding increase. This is
indicative of a strongly coupled system, where increases in
reaction rates are countered by a diffusive limitation and
decreases in diffusivity by dissolution limitation. In fact,

Figure 4. Comparison of alternate models. All cases utilize T = 350°C and s′ = 50 MPa. Model m1 is
the implicit calculation sequence presented in this paper, m2 is the viscous dashpot model, and m3 is
equation (39) only. All concentrations normalized to Ceq

h = 12.997 mol/m3 (350°C). At 350°C, k+ =
6.05 × 10−8 mol m−2 s−1. Simulations utilize a low bulk modulus (1 GPa, see Appendix A), to ensure a
higher initial contact area and the absence of early time rate overestimation (section 8.1).
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these figures can largely be viewed as variations in the
dissolution/diffusion/precipitation system rather than as an
illustration of the importance of any one parameter. Figure 5b
decreases the diffusivity (shifting toward diffusive control)
and reexamines the behavior of Figure 5a. In this case in-
creases of rate constant have a smaller effect on compaction,
as diffusion is now a stronger player.
[32] In this system, order of magnitude changes in diffu-

sivity is required to produce strongly visible changes in
compaction rate. With regard to the intergranular film width,
w, much of the literature places this parameter in the range
2–10 nm, and changes of this magnitude have an insignifi-
cant effect on compaction. The fractional contact parameter,
a, is an important contributor to behavior, as illustrated in
Figure 4. The burial constant, bc, is the primary control on
final compaction magnitude, and so the effect of parameter
variation is to alter the final porosity. Methods to obtain it
and a discussion of its characteristics are found in the fol-
lowing section and Appendix A.

8. Experimental Comparisons

[33] This section introduces predictive comparisons of our
model against the laboratory results of Niemeijer et al.
[2002] and van Noort et al. [2008a]. In these experiments,
both the initial and final porosity are known, so that the burial
constant may be directly calculated (Appendix A). We find,
in agreement with Niemeijer et al. [2002], that behavior is

indeed dissolution dominated under these experimental con-
ditions. Changes to diffusivity, at least within 1–2 orders of
magnitude, have only minor (if any) effects on compac-
tion rate. Experimental conditions of the various curves in
Figures 6–8 are shown in Table 2.
[34] Figure 6 compares model results to the experiments

of van Noort et al. [2008a]. The zero stress porosity, 	0, is

Figure 5. Comparison of various parameter changes with T = 350°C, s′ = 50 MPa, a = 1. All concentra-
tions normalized to Ceq

h = 12.997 mol/m3 (350°C). At 350°C, k+ = 6.05 × 10−8 mol m−2 s−1. Simulations
utilize a low bulk modulus (1 GPa, see Appendix A), to ensure a higher initial contact area and the
absence of early time rate overestimation (section 8.1).

Figure 6. Comparison of model with data from van Noort
et al. [2008a]. Experimental conditions in Table 2.
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calculated according to section A1 and then bc according to
section A2. Between experiments, only the bulk modulus,
Kb, of the composite sample (used to obtain 	0) is varied; all
others are held constant. Such variations are conceptually
reasonable, given differences in grain arrangements between
samples (and potentially grain size). The variation, however,
is quite small, averaging 1.3 GPa and ranging from about 1 to
2 GPa (somewhat smaller than typical values of ∼8 GPa for
Berea sandstone, for instance). Because this value determines
the initial contact area ratio in the compressed samples, the
smaller value is likely accommodating for imperfections
from the spherical particle approximation. The result is that
initial contact area ratio is stress dependent, varying from 3%
to 4% at 50 MPa to 7% to 8% at 100 MPa effective stress and
shifting slightly between samples. The least accurate match
occurs for sample qc07, which exhibits by far the smallest
particle size, and for which the compaction rate is over-
estimated throughout the experiment. Particle size variations
between other experiments do not appear to cause problems.
[35] Figure 7 takes a larger step and compares the same

model to the experimental results of Niemeijer et al. [2002].
In many of these experiments, the true final porosity is not
known because of sudden cessation of compaction that
could not be explained and appears to be noncongruent with
a natural process. They suggested that chemical interference

from the testing materials might have altered the dissolution
process. This characteristic behavior shares very similar
form to several of the results from van Noort et al. [2008a]
that resulted from precipitated silica blockage of the output
fluid lines. Therefore, bc is adopted, as a function of stress
only, from the results of van Noort et al. [2008a] where
necessary. Figure 7 shows only the initial data of Niemeijer
et al. [2002] for visualization purposes. Figure 8 shows
model data in comparison to the full time data of Niemeijer
et al. [2002]. As before, no parameter adjustments are made
between experiments aside from slight adjustments to the
initial porosity, via Kb.

8.1. Overestimation of Compaction Rates

[36] Plotting these same results versus log(time) shows
that for all data from van Noort et al. [2008a], compaction
rates in early times (approximately <15 min) are consistently
overestimated (Figure 9). The time of overestimation increases
proportionally with stress. This same phenomenon has been
noted elsewhere (for example, van Noort et al. [2009]) and is
intuitively explained. During this time, contact area ratio
within the samples is generally <5%–8% (Table 2, and see
Karcz et al. [2008] and van Noort et al. 2009]), leading to
disjoining stresses in excess of plastic flow criteria. If this
process is rate limiting in comparison to higher compaction
rates from dissolution, then compaction would be slowed to
the plastic flow rate and the energy contribution to chemical
potential (equation (1)) dissipated. If this, or some other,
process is not rate limiting, then dissolution rates will be
markedly enhanced (Figure 9), along with predicted inter-
facial concentrations (by equations (1), (8), and (10)).
[37] This can be examined (for illustrative purposes only)

by introducing a mechanical buffer to the pressure solution
model. The mechanical buffer curve in Figure 9 is obtained
by placing a stress cap on the model. Disjoining stress is
restricted to this maximum value (representing the stress
above which plastic flow would dominate). While mecha-
nistically only an approximation, the result illustrates that
such an energy limitation could potentially explain the early
rate overestimation, without altering the behavior of pres-
sure solution in later times.

Figure 7. Comparison of model with data from Niemeijer
et al. [2002]. Experimental conditions in Table 2.

Figure 8. Full time comparison to the data of Niemeijer
et al. [2002]. Experimental conditions in Table 2.
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[38] This overestimation, however, is not present in most
of the data of Niemeijer et al. [2002]. Note (Table 2) that
	c − p is consistently lower for these experiments compared
to the data from van Noort et al. [2008a] at similar stress,
which may indicate the prior contribution of some addi-
tional compaction process. The reasons for this, however,
are unclear.

8.2. Stress Dependence and the Burial Constant

[39] Results of the previous section indicate that effective
stress is an important contributor to equilibrium compaction,
referenced by the fact that bc appears largely to be a func-
tion of stress alone (Figure 10). Temperature effects appear
to be accommodated correctly, at least approximately, by
the remaining portion of the critical stress. Simulations were
also conducted (utilizing the above formation, and see
section 10) utilizing surface energy (equation (2)) and strain
energy (equation (3)) to control final equilibrium (without

critical stress). It is possible with this method to reproduce
final compaction for individual experiments with adjustment
of surface energy parameters. However, the lack of stress
dependency in the simplified formulation of equation (2)
prohibits the possibility of extension to arbitrary conditions
of stress. Stress‐dependent surface energy, or the inclusion of
some other stress dependent process, would be required to
extend the model to arbitrary stress conditions. In the current
formulation, only the stress‐dependent burial constant is
capable of this.

9. Natural Data

[40] Utilizing the burial constant data from Figure 10, it
is possible to make an extension of final compaction mag-
nitudes to naturally observed data. This is conducted in
Figure 11. Data for Figure 11 come from Ramm [1992], and
initial porosity is obtained by following the relationship for
grain compression and reorientation proposed therein. The
relationship proposed there is 	c−p = 45exp(−hZ), where
h = ln(2)/Z1/2, where Z is depth (km) and Z1/2 is defined as the
“half‐porosity depth,” or the depth at which half of the
mechanically reduced porosity is obtained. 	0 is then given
according to section A1. Burial constant is taken directly as
the polynomial fit of Figure 10, with Kb taken as the average
from experiments, 1.3 GPa, for lithostatic (effective) stress
of 12.1 MPa/km and a geothermal gradient of 35°C/km
[Ramm, 1992].

10. Diffusion Control Through a Cement Sheath

[41] An alternatemethod to obtain equilibrium is to exclude
the critical stress and rely solely on grain periphery healing to
rate control a final equilibrium. This rate‐controlled process
progressively decreases the disjoining stress by adding to
granular contact area (affects the saVm term) and increases
diffusive resistance around the grain. In this case the full
form of equation (1) is used, with strain energy provided by
equation (3) and surface energy by equation (2). Methods for

Figure 9. Compaction overestimation in early times.
“Mechanical buffer” curve places a stress cap on chemical
potential (see text).

Figure 10. Burial constant results from simulated experi-
ments of Niemeijer et al. [2002] and van Noort et al. [2008a].

Figure 11. Comparison to natural data of Ramm [1992].
Lithostat: 12.1 MPa/km. Geotherm: 35°C/km.
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approximating surface energy are, for instance, given by van
Noort et al. [2008b].
[42] It is possible to examine this by extending the above

mass balance system with a second finite element. With
reference to Figure 1 (two‐element conceptualization), the
new system comprises three nodes, the first representing the
intergranular contact area, a second node in the pore space
immediately surrounding the grain periphery, and a third
node in the open pore space. Diffusion from the intergran-
ular contact enters the grain periphery region through the
first finite element and then bulk diffusion (represented by
the bulk diffusivity, Dp) allows flux of this material in the
open pore. If Dp is small compared to the pore precipitation
rate constant, material will deposit more rapidly around the
grain. Deposited cement increases the granular contact area
and decreases the rates of diffusion and dissolution. The
mathematical development of this system is presented in
Appendix B. Discussed here are a few brief conclusions
from this analysis.
[43] Diffusion limitation from a growing neck is sufficient

to significantly inhibit compaction, but the trend of the data
utilizing this method does not agree with experimental
results. Several of the experiments may be accurately fit with
this method but not in a way that is extensible to alternate
conditions.
[44] The cement region is assumed to behave differently

than discrete contacting grains, in that it does not possess
a thin film and so does not undergo dissolution precipitation
creep (equation (B9)). Rate reductions from this simple
approximation, however, do not appear to account fully for
dissolution restriction caused by a cement neck. Because the
area of cement in contact is, in these analyses, actually quite
small (see also the figures in the study of Niemeijer et al.
[2002] and van Noort et al. [2008a]), very little rate limita-
tion occurs.
[45] Because of its limiting dissolution rate, cement will

“support” the granular contact as a function of its area of
contact and the mechanical constants of the grain and
cement. This seems the more likely scenario that could lead
to equilibrium compaction and is in line with the results
above (stress dependent burial constant). A more complex
analysis incorporating stress effects into the achievement of
cement driven equilibrium would be required to examine
this potential.

11. Discussion

[46] A fully implicit model was developed for the serial
processes of dissolution/diffusion/precipitation during the
process of dissolution precipitation creep. Maintaining a
concentration‐dependent dissolution flux introduces impor-
tant restrictions on rate behavior. Compared to an implicit
model, concentration‐independent methods appear to appro-
priately represent a mean compaction behavior, slightly
underestimating rates in dissolution‐dominated regimes and
slightly overestimating in diffusion limitation. Aqueous
concentration in the intergranular film affects dissolution rate
at all times so that the rate of diffusive flux can influence
compaction rates, even in “dissolution‐limited” regimes.
[47] The use of a modified critical stress is capable of

reproducing final pressure solution equilibrium with rea-
sonable accuracy. Any reasonable method may however be

chosen to represent the decline in chemical potential and thus
compaction equilibrium. The resulting chemical potential
need only be inserted into the implicit rate model (via
equation (8)). While it seems unlikely that any single pressure
solution model will be applicable to all scenarios, the com-
bined model presented here reproduces experimental data
with reasonable accuracy across a range of experimental
conditions, suggesting that the concept applied to the model
may be progressing in the correct direction.
[48] Reproducing equilibrium compaction with rate‐

controlled cement deposition is not possible with the sim-
plified model presented here in all but rare cases. Therefore,
it is not yet clear what precise mechanism is being com-
pensated for by the use of a burial constant. The argument
presented in the previous section regarding the development
of a nonreactive (or at least not stress activated) mechanical
support frame developed from deposited silica seems rea-
sonable given the derivation of the burial constant (derived
with exactly this purpose [Stephenson et al., 1992]), further
supported by its dependence on effective stress. However,
other processes cannot be ruled out, such as the eventual decay
in stress levels below the compressive strength of nonuniform
granular contacts. In either case, further mechanical con-
siderations may be capable of defining final compaction,
whether or not this includes contribution from a growing
cement neck around the grain periphery.

Appendix A

A1. Initial Porosity

[49] Niemeijer et al. [2002] and van Noort et al. [2008a]
followed a similar experimental procedure. Samples were
first cold pressed at the desired experimental stress to allow
for mechanical compression and grain reorientation. Hydro-
thermal pressure solution compaction monitoring began from
this stage of initial porosity, which we will call 	c − p (for cold
pressed). The porosity referred to in this paper as 	0, is the
zero‐stress porosity following grain reorientation. It is,
therefore, 	c − p decompressed (through elastic expansion, not
reorientation) to a value of zero stress. For perfectly spherical
particles, it is this value, 	0, where contact area between
grains is approximately zero, and it is from this value that
Rutter [1983] defines a contact area relationship of Rc =
(	0 − 	)/	0 and where we assume that contact interpene-
tration is approximately zero. A bulk modulus of the bulk
material (in the “drained,” or long‐term limit) is used to
relate 	0 and 	c−p

"v ¼ �0=Kb ðA1Þ

	c�p ¼ 1� 1� 	0

1� "v
: ðA2Þ

This assigns the initial mechanical strain, mechanical inter-
penetration, and contact area ratio at 	c−p, where the experi-
ments begin. Once 	0 is known, bc may be calculated
according to the following section.

A2. Direct Calculation of Burial Constant

[50] In these experimental comparisons, both the initial
and final porosity is approximately known. In this case the
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burial constant may be directly calculated. Assuming a fully
closed system, from equation (32), the volume strain at final
compaction is "v

f = (	0 − 	f)/(1 − 	f). With the linear strain
provided by equation (30) as "l

f = 1 − (1 − "v
f )1/3. Substi-

tuting equation (34) into equation (35) and substituting the
quantity, h = "l

fri, into the result yields

Rc ¼
Nc"

f
l 2� "fl
� �
4

ðA3Þ

for the contact area ratio at final compaction. From
equation (37), and given sa = s′/Rc, the burial constant is


c ¼
ffiffiffiffiffiffiffiffiffiffi
�0

Rc�c

r
ðA4Þ

with Rc given by equation (A3) and with

�c ¼ EA 1� T=TAð ÞNc 1� 	0ð Þ
4Vm

: ðA5Þ

Accuracy of this result depends on the degree of closure in
the system. In a completely closed system, mass loss → 0,
the result is quite accurate.

Appendix B

B1. Composite Mass Balance

[51] To better capture behavior in the neck growth area, a
reasonable extension is to include a second element in the
finite element system. With reference to Figure 1 (two‐
element conceptualization), the new system comprises three
nodes: the first representing the intergranular contact area, a
second node in the pore space immediately surrounding the
grain periphery, and a third node in the open pore space.
Diffusion from the intergranular contact enters this region
through the first finite element, and then bulk diffusion
(represented by the bulk diffusivity, Dp) allows flux of this
material in the open pore. If Dp is small compared to the
pore precipitation rate constant, material will deposit more
rapidly around the grain. For two elements, we require four
mass balance equations: the first two representing the rela-

tionship between the contact area and grain periphery
(subscripted c for cement),

_CiVi ¼ kþArx
i aSiO2 1�

~Ci

aSiO2C
h
eq

 !
� D ~Ci � ~Cc

� � ðB1Þ

_Cc
Vc

2
¼ kþ

Arx
c

2
1�

~Cc

Ch
eq

 !
þ D ~Ci � ~Cc

� � ðB2Þ

where the volume of the cement region, Vc, is divided
equally between each element (divide by 2), D is diffusivity
in the intergranular space (equation (21)), and Ac

rx is reactive
area within the cement region. The second mass balance
system represents precipitation and bulk diffusion from the
cement region to open pore,
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� Dp
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� � ðB3Þ

_CpVp ¼ kþArx
p 1�

~Cp

Ch
eq

 !
þ Dp

~Cc � ~Cp

� � ðB4Þ

In this system, Dp is bulk diffusivity in the open pore.
Distributing these four relationships into local matrices, as
in equation (22), and adding the system leads to the global
linear system,
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with the global implicit solution,
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B2. Cement Characteristics

[52] As a cement neck grows from the grain contact the
total (grain + cement), contact area of a single contact is
calculated from (assuming uniform deposition around the
grain contact)

agc ¼ � hþ cdð Þ 2ri þ cd � hð Þ ðB7Þ

for the depth (orthogonal to grain surface) of deposited
cement, cd, and the granular interpenetration, h. Contact area
due only to the granular contact (excluding cement) is given
by equation (34). The disjoining stress is now a function of
the total contact area calculated from agc rather than ag as
above. While molecular diffusion should not differ signifi-
cantly within the cement neck, the tortuosity of such a layer
is potentially large. Uniform deposition around the grain
periphery could lead to significant diffusive resistance, while
a nonuniform deposition would have little impact. A number
of complicating factors arise in the description of neck growth
and only a simple probing analysis is conducted here to
examine the potential for diffusion or rate limitation from
such a neck to encourage equilibrium. It is assumed that the
neck is uniform and exhibits a large diffusive tortuosity.
Diffusive flux through the cement region is then

_mdiff ¼ 2�Df!

�cf ln rgc=rg
� � ~Ci � ~Cc

� � ðB8Þ

(Carslaw and Jaeger [1959]; section 7.2.I), where rgc is total
(grain + cement) contact radius (see Figure 1), rg is grain‐only
contact radius, ~Cc is concentration in the cement region, and
tf
c is the diffusive tortuosity factor for the neck region. Total

intergranular diffusion is then given by the limiting behavior
of either equation (B8) or of granular diffusion given by
equation (17). Equation (B8) will grow larger with the ratio of
cement radius to grain radius.
[53] Cement will have at least two other effects, both

originating in the rate of dissolution from cement contacts.
While dissolution would occur at cement edges, there is no
experimental or conceptual support for thin film‐type diffu-
sion within the cement layer. The first effect then, is that the
fraction of contact because of cement will not undergo stress‐
activated dissolution in any significant magnitude. Second,
because of its limiting dissolution rate, cement will “support”
the granular contact as a function of its area of contact and the
mechanical constants of the grain and cement. This is the
more likely scenario that could lead to equilibrium compac-
tion and is in line with the results above (stress‐dependent
burial constant), but its inclusion requires mechanical anal-
yses beyond the scope of this work. To examine the first
effect, we introduce the simple approximation,

1

aSiO2k
þ
i

¼ f ca
kþi

þ f ga
aSiO2k

þ
i

; ðB9Þ

for the fraction of total contact area due to cement, fa
c, and

grain, fa
g. This simply states that reaction rate within the

cement is not stress activated and treats the dissolution

compaction of each region as a resistor in series. Preferential
deposition to the cement periphery (prior to bulk diffusion
into the open pore) may be accommodated by decreasing bulk
diffusivity accordingly.

Nomenclature

ag Contact area ‐ single granular interface
(equation (34))

aSiO2
Activity of solid silica (equation (8))

aH4SiO2
Activity of aqueous silica

AT Total contact area (REV)
(V0(1 − 	0)Sag/Vg)

Ai
rx Intergranular reactive area (REV)

(V0(1 − 	0)Ncag/Vg)
Ap
rx Pore reactive area (REV) (AT − Ai

rx)
~Ci,p Mean concentration (subscript interface or

pore) (mol · m−3)
Ceq
h Aqueous solubility ‐ hydrostatic

(0.11 mol · m−3 @ 25 °C)
Ceq
s Aqueous solubility ‐ intergranular fluid

(mol · m−3)
Df Molecular diffusivity (m2 · s−1)

(equation (18))
Kb Bulk modulus (<8 GPa)

h, Dh Interpenetration distance (cumulative
or change)

H Local solid/fluid interface curvature
k+ Dissolution rate constant (mol · m−2 · s−1)

(5.04 × 10−14 mol m−2 s−1 @ 25°C,
Ea = 67.4 kJ/mol)

k− Precipitation rate constant (mol · m−2 · s−1)
Keq Equilibrium constant
_mi,p
x Mass rate (mol · s−1) (subscript interface

or pore), superscript rx for reaction, diff
for diffusion

Dmi,p
SiO2 Change of aqueous silica over a time

step (mol)
Nc Number of contacts per grain
Qss Steady state influx of boundary water

(m3 · s−1)
ri Initial (time = 0) mean particle radius
Rc Contact area ratio (equation (35))
Sag Mean surface area per grain
US Surface energy (J · mol−1)
UE Elastic strain energy (J · mol−1)
UD Dislocation energy (J · mol−1)
Vm Molar volume (m3 · mol−1)
Vp Current total pore volume (V0(1 − "v)	)
Vi Current total interface volume (Ai

rxw/2)
Vg Mean volume of each grain
Vg
T Total grain volume (REV) (V0(1 − 	0))

Greek symbols

a Intergranular roughness (section 3.2)
bc Burial constant (section 5)
"l,V Strain (subscript linear or volume)

(equation (30))
	 Current porosity (transient)

	c−p Cold‐pressed porosity (after mechanical,
before hydrothermal)
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	0 Initial (zero‐stress) porosity
gG Gibbs surface energy (J · mol−1)
gh,s Activity coefficient
Dm Chemical potential gradient (J · mol−1)
s′ Effective stress
sa Effective disjoining stress
sa
eq Equilibrium compaction stress (sa

eq = scbc)
sc Critical stress
w Thickness of intergranular film
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