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Abstract A novel approach is developed to represent coupled thermal-hydraulic-
mechanical (THM) behavior of porous systems that incorporates the non-isothermal
free and forced convection of a single component fluid in a non-boiling thermoelastic
medium. The three-way simultaneous coupling between the THM triplet is currently
linear, but no restriction is placed on incorporating material nonlinearities. The
coupled PDEs are solved in space by grid-adaptive finite elements. The model is
validated against solutions for linear non-isothermal consolidation of a column. We
demonstrate the utility of the model by analyzing the behavior of a deep wellbore in
a themoelastic medium circulated by a pressurized, but chilled fluid. Model results
illustrate the significant importance of the cross-couplings between individual THM
processes for the evaluation of wellbore stability.

Keywords boreholes, coupled thermal-hydraulic-mechanical processes, pore pres-
sure, stress analysis, thermal diffusion, wellbore stability

Introduction

Coupled thermal-hydrologic-mechanical (THM) processes in porous media are important
in a broad range of natural and engineered processes. Important contemporary issues in-
clude resource recovery of hydrocarbons, including gas hydrates, and in the safe disposal
of wastes, including geologic sequestration of CO2 and the entombment of radioactive
wastes. In all applications, the complexities of process interactions exert a strong control
on ultimate behavior—these include linear physical interactions, but also the development
of material nonlinearities that irreversibly alter the affected media. This is equally the
case in engineering the recovery of hydrocarbons. Oil recovery operations are traditionally
divided between primary, secondary, and tertiary stages (Green and Willhite, 1998). All
of these recovery processes involve coupled processes. For primary production, accurate
prediction of oil production in a pressure-sensitive reservoir requires both mechanical
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158 J. C. Sheng et al.

deformation and fluid flow modeling (Minkoff et al., 2003). A set of doubly coupled
equations, with a number of coupling relations, are required to quantify the phenomenon.
The couplings may be between linear processes, linked in poroelasticity via the principle
of effective stress (Biot, 1941), but may also include material nonlinearities such as
strain-dependent permeability (Liu et al., 2000). For secondary recovery, a triplet of
individual processes (multiphase flow, deformation, and chemical transport) is coupled.
A set of triply coupled equations, with a number of coupling relations such saturation-
dependent permeability and flow-dependent chemical transport, are required to quantify
the phenomenon. For EOR (tertiary recovery is often termed as enhanced oil recovery,
or EOR), a quadruplet of individual processes (multiphase flow, deformation, chemical
and thermal transport) is coupled. EOR processes involve the injection of energetic or
reactive fluids into a reservoir. A set of quadruply coupled equations with a number
of coupled relations is required to quantify the phenomenon. Scientific interest in these
coupled processes in geological systems has resulted in a number of research efforts
aimed at understanding the coupled thermal, hydrological, chemical, and mechanical
(THMC) behaviors of geological systems (Guvanasen and Chan, 2000; Liu and Brady,
2004; Tsang, 1999; Oldenburg et al., 2001; Rutqvist and Tsang, 2003; Rutqvist et al.,
2002; Neaupane and Yamabe, 2001; Sheorey et al., 2001).

In this study, we define the coupled THM processes as coupled multiphysics. Accord-
ing to Minkoff et al. (2003), there are three basic algorithms for the simulation of coupled
multiphysics: one-way coupling, loose coupling, and full coupling. For one-way coupling,
two essentially separate sets of equations are solved independently over the same total
time interval. Periodically, output from one simulator is passed as input to the other;
however, information is passed in only one direction. An example of successful one-way
coupling is available in Fredrich et al., (1998). Several other studies that used a “loose
coupling” algorithm to simulate coupled multiphysics phenomena reside somewhere full
and one-way coupling (Minkoff et al., 2003; Rutqvist and Tsang, 2003; Tsang, 1999;
Oldenburg et al., 2001). In loose coupling, two sets of equations are solved independently
(as in one-way coupling), but information is passed at designated time intervals in both
directions between the two simulators (fluid flow and geomechanics). To define a fully
coupled simulator, a single set of equations (generally a large system of non-linear
coupled partial differential equations) incorporating all of the relevant physics must be
derived. Full coupling is often the preferred method for simulating multiple types of
physics simultaneously since it should theoretically produce the most realistic results.
Little progress has so far been reported due to the extreme complexity in simulating
multiphysics simultaneously. The primary motivation of this study is to demonstrate our
latest success in simulating multiphysics simultaneously by using FEMLAB, the first
engineering tool that performs equation-based multiphysics modeling in an interactive
environment. With FEMLAB we extend conventional models for one type of physics into
multiphysics models that solve coupled physics phenomena, and do so simultaneously.
Specifically, we derive a single set of equations incorporating the physics of fluid flow, of
solid deformation, and of energy transport in porous media. The cross-couplings among
multiple processes are defined by the coupled relations between material properties and
independent variables. This approach is detailed in the following.

Governing Equations

In this study, we formulate the coupled equations based on Noorishad and Tsang (1996).
Conservation equations for energy, mass, and momentum are derived on the macroscopic
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Borehole Stress Analysis 159

scale (all variables are averaged over the REV of the medium) for a saturated, porous
elastic medium.

Flow Equation

The Eulerian form of the mass balance equation for fluid flow is defined as

@.!"l /

@t
C r ! !"lVl D Q (1)

where ! is the porosity in a general continuum, "l is the liquid density, t is time (seconds),
Vl is the velocity vector of the fluid, and Q is the source term of the fluid. The momentum
balance for the fluid flow in porous media under usual assumptions yields the generalized
Darcy equation of motion in the Cartesian coordinate system:

Vl D "
k

#l
! .rP " "lg/ (2)

where #l is the dynamic fluid viscosity, k is the intrinsic permeability tensor in a
general continuum, P is the pore fluid pressure (Pa), and g is the vector of gravitational
acceleration .m=s2/. Substituting Eq. (2) into Eq. (1), and including the deformation of
the solid skeleton, the flow Eq. (1) can be rewritten as

"l

"0

@"v

@t
C

@.!"l/

@t
" r !

!

"lk

#l
.rP " "l g/

"

D Q (3)

where "0 is the density of the reference fluid, "v is the volumetric strain of rock matrix.
Using the truncated Taylor series expansion of "l , the relationship of fluid density with
temperature and pressure is defined as

D"l

Dt
D "0ˇT

DT

Dt
C "0ˇP

DP

Dt
(4)

where T is the temperature, ˇT is the coefficient of thermal volume expansion for
the liquid, ˇP is the compressibility coefficient of the liquid, and D/Dt represents the
substantial or material derivative. Substituting Eq. (4) into Eq. (3) yields the following
equation:

"l

"0

@"v

@t
C !ˇP

@P

@t
" !ˇT

@T

@t
" r !

!

"lk

"0#l
! .rP " "l g/

"

D Q: (5)

Equation (5) is the final form of the governing equation for the moving fluid in a porous
thermoelastic medium. The first three terms on the left side of Eq. (5) describe the changes
in rock volume due to strain, fluid-pressure, and temperature, respectively. The last term
on the left side of Eq. (5) represents the resulting fluid flow driven by the pressure
gradient and gravity and moderated by Darcy’s law.

Energy Conservation Equation

The solid skeleton and the fluid coexist within a common control volume, but exhibit
different thermodynamic properties, such as specific heat capacity and thermal conduc-
tivity. Therefore, equations of energy conservation for the solid skeleton and the fluid



D
ow

nl
oa

de
d 

B
y:

 [P
en

ns
yl

va
ni

a 
S

ta
te

 U
ni

ve
rs

ity
] A

t: 
20

:5
4 

24
 M

ar
ch

 2
00

8 

160 J. C. Sheng et al.

should be defined individually. The energy conservation for the solid skeleton is defined
as

.1 " !/."cp/s
@T

@t
D .1 " !/r ! .KsrT / C .1 " !/qs : (6)

where ."cp/s is the thermal capacity, Ks is the thermal conductance tensor, and qs is
the thermal source intensity, all defined for the solid. For the fluid, the corresponding
equation for energy conservation is defined as

!."cp/l
@T

@t
C ."cp/l .Vl ! r/T D !r ! .Kl rT / C !ql (7)

where ."cp/l , Kl , and ql are as defined previously, but with the subscripted l representing
the liquid (fluid) component. In a single phase flow system, using the assumption of
thermal equilibrium between the solid and the fluid, and combining Eq. (6) with Eq. (7),
yields the following uniform equation of energy conservation:

."cp/t
@T

@t
C ."cp/l .Vl ! r/T D r ! .Kt ! rT / C qt (8)

where ."cp/t and Kt are the specific heat capacity and thermal conductivity of the fluid-
filled medium, defined as ."cp/t D !."cp/l C .1 " !/."cp/s , Kt D !Kl C .1 " !/Ks ,
respectively. qt is the source term applied to the fluid-filled medium, defined as qt D
!ql C .1 " !/qs , but generally defined only as an aggregate input to a control volume.
cpl and cps are the fluid and solid specific heat constants at constant volume. For an
isotropic system with respect to the flow of both heat and fluid, Eq. (8) with the energy
of deformation also accommodated can be written as (Noorishad and Tsang, 1996):

$
@T

@t
C .1 " !/T0%

@"v

@t
C .Vl ! r/T D ˛tr

2T C
qt

."cp/f
(9)

where, $ D ."cp/t =."cp/l , ˛t D kt=."cp/l , and kt is the thermal conductivity coefficient
of the fluid-filled medium, and T0 is the absolute temperature in the stress-free state,
% D .2#C3&/ˇ, & and # are the Lamé constants and ˇ is the linear isotropic coefficient
of solid thermal expansion. The deformation energy conversion term, T0ˇ@"v=@t , is not
a major contributing term to the energy balance, and can be dropped from the equation
if desired.

Mechanical Equilibrium Equation

The constitutive equation defines the relation between the total bulk stress components,
'ij , strain components, "ij , fluid pressure P , and the thermal stresses, 'T ij .

For the mechanically isotropic case, the stress-strain law is defined as follows:

'ij D Dijkl ."kl " "T kl / " ˛ıij P; i; j D 1; 2; 3 (10)

where Dijkl is the elasticity tensor, ˛ is the Biot coefficient partitioning fluid pressure
and total stress to effective stress, and ıij is the Kronecker delta defined as 1 for i D j
and 0 for i ¤ j . Under condition of thermal isotropy, Eq. (10) can be written as

'ij D Dijkl "kl " %ıij T " ˛ıij P: (11)
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Borehole Stress Analysis 161

The dependent variables (", P , and T ) in Eq. (11) are all incremental and represent
deviation from the zero (stress-free) state. Using compact notation, the equilibrium
equation is defined as

"'ij;j D Fi : (12)

where 'ij is the stress tensor, and Fi is the component of the body force. Substituting
Eq. (11) and the strain-displacement relations into the equation of static equilibrium
(Eq. (12)) yields Navier’s equation of equilibrium expressed in terms of displacements.
Under static conditions, and including thermal effects, Navier’s equation is defined as

GUi;jj C
G

1 " 2(
Uj;j i " ˛p;i " %T;i C Fi D 0 (13)

where Ui is the displacement of the solid skeleton, and G is the shear modulus.

Validation Example

Equations (5), (9), and (13) with essential boundary and initial conditions define the
fully coupled THM system in a saturated elastic medium. This complete set of coupled
equations is implemented into, and solved, by using FEMLAB. FEMLAB is a powerful
multiphysics simulator with a broad range of applicability in science and engineering. Its
main strength is the ability to simulate coupled processes that are modelled with partial
differential equations (PDEs). In the following, we validate our FEMLAB-based model
by comparison with known solutions.

Noorishad and Tsang (1996) used a coupled finite element code to analyse the
thermoelastic consolidation of a sand column. The data used in this problem are given in
Table 1. We use our FEMLAB-based model to simulate both the isothermal consolidation
and the thermoelastic consolidation. Comparisons between predictions by the two codes
are shown in Figure 1. For the case of isothermal consolidation, our results compare
quite well with Biot’s analytic solution (Biot, 1941). For thermoelastic consolidation, our
results also compare well with Noorishad’s and Tsang’s (1996) solution.

Application Example

Wellbore stability is one of many serious problems in the oil and gas industry. In most
cases, the instability of a wellbore is a coupled THM phenomenon. Thermal diffusion
inside the drilled formation induces additional pore pressure, changes rock stress, and
consequently affects wellbore stability (Wang et al., 2003). This problem has previously
been solved by one-way coupling or “loose coupling” using an algorithm that is partially
decoupled (Chen et al., 2003). In the following, we apply our FEMLAB-based model to
solve this problem as a fully coupled THM system.

Model Description

The problem domain and boundary conditions are illustrated in Figure 2. A wellbore of
0.1 m radius is embedded within a square problem of 2 # 2 m. Constant stresses are
applied in both the vertical (Shmin D 20 MPa) and the horizontal (Shmax D 30 MPa)
directions. The temperature and fluid pressure at the wellbore wall are assumed to be
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162 J. C. Sheng et al.

Table 1

Rock properties used for the consolidation cases and the application example

Parameters
Validation
example

Application
example

Rock density, "s (kgm!3) NA 2,600
Young’s modulus, E (MPa) 6:0 # 10!3 5,000
Rock thermal conductivity, Kt .kJm!1s!1ıC!1/ 8:36 # 10!1 3:08 # 10!3

Rock thermal expansion coefficient, ˇ.ıC!1/ 3:0 # 10!7 1:0 # 10!5

Rock specific heat, cps .kcalkg!1ıC!1/ NA 0.20
Specific heat, ."c/t .kJm!3ıC!1/ 167.0
Matrix porosity, ! 0.2 0.2
Matrix permeability, k (m2) 4:0 # 10!6 5:0 # 10!13

Biot’s coefficient, ˛ 1.0 1.0
Poisson’s ratio, ( 0.4 0.25
Fluid density, "l (kgm!3) NA 1,000.0
Fluid compressibility, ˇP (GPa!1) NA 0.513
Dynamic viscosity at 20ıC, ) (Nsm!2) NA 10!3

Fluid thermal expansion coefficient, ˇT .ıC!1/ NA 3:17 # 10!4

Fluid specific heat, cpl .kcalkg!1ıC!1/ NA 1.0

Figure 1. Comparisons of FEMLAB simulation results with the known solutions, where simulation

data are represented by the symbols while the known solutions are represented by the solid lines.

A: Comparison with Biot’s (1941) analytical solution for the consolidated history of a sand column
without thermal effects. B: Comparison with results of Noorishad and Tsang (1996) with thermal

effects.



D
ow

nl
oa

de
d 

B
y:

 [P
en

ns
yl

va
ni

a 
S

ta
te

 U
ni

ve
rs

ity
] A

t: 
20

:5
4 

24
 M

ar
ch

 2
00

8 

Borehole Stress Analysis 163

Figure 2. Problem definition. Constant compressive pressures, temperatures, and fluid pressures

are applied on outside and inside boundary conditions.

equal to the temperature and the pressure of the drilling fluid in the annulus. These are
set as temperature and pressure differentials between the formation and the drilling fluid
as "50ıC and 10 MPa, respectively. Null temperatures and pore pressures are defined
within the rock formation. The properties of the rock and fluid are given in Table 1.

Model Cases

Four different cases are simulated to illustrate the relative importance of cross couplings.
These four cases are:

$ Case 1: Mechanical process only, i.e., *p D 0 MPa, *T D 0ıC, where *p D
pw " p0 and *T D Tw " T0.

$ Case 2: Coupled mechanical-thermal processes, i.e., *p D 0 MPa, *T D "50ıC.
$ Case 3: Coupled mechanical-thermal-hydrological processes, i.e., *p D 10 MPa,

*T D "50ıC.
$ Case 4: Uncoupled mechanical-thermal-hydrological processes, i.e., *p D 10 MPa,

*T D "50ıC.

There are no coupled terms of "l="0@"v=@t and in Eq. (5), and no coupled terms of
.1 " !/T0%@"v=@t and .Vl ! r/T in Eq. (9). In this example, rock permeability is very
high .5:0 # 10!13 m2/, so only the coupled term of convective heat transport .Vl ! r/T
has significant effect on multiphysics process.
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Figure 3. Contours of tangential stress (MPa) at time D 86400s for the case of fully coupled
mechanical-thermal-hydrological processes.

Comparison of Tangential Stresses

Model results of the tangential stress, '!! for these four cases are shown in Figures 3
to 5. Figure 3 shows contours of tangential stress at time of 86400s for case 3. From
Figure 3, we can see that the stress concentration occurs on the wellbore wall at the
directions of + D ˙90ı. The maximum magnitude of the compressive tangential stress

Figure 4. Variations of tangential stress (MPa) along the A-A section at time D 86400s for different

cases.
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Borehole Stress Analysis 165

Figure 5. Variations of tangential stress with time at Point A for different cases.

reaches about 65 MPa on the wellbore wall at the directions of + D ˙90ı, and the
minimum tangential stress on the wellbore wall is about 25 MPa, which occurs at the
directions of + D 0ı and 180ı. Figure 4 shows variations of the tangential stress with
radius at the time of 86400s for four cases. Model results illustrate that the magnitude
of the compressive tangential stress, '!! , in the vicinity of the wellbore decreases with
the temperature and the pore pressure, as shown in Figure 4 for Cases 1 through 3. This
is induced by cooling shrink and the effect of pore pressure as cooling process and fluid
transport inside the rock formation. Through comparing the magnitudes of '!! in Figure 4
for Case 3 and Case 4, we can conclude that there is a big difference for tangential
stress between coupled T-M-H system and uncoupled T-M-H system. On the wellbore
wall, the magnitude of compressive tangential stress for the coupled T-H-M system is
1.35 MPa larger than that for the uncoupled system (see Table 2). On the contrary, the
magnitude of the compressive tangential stress for the coupled T-H-M system is smaller
than that for the uncoupled system inside rock formation. This difference is mainly
induced by heat transport process. The heat transport process in the coupled T-H-M
system is dramatically faster that that in the uncoupled system because of the convective
heat transport. Variations of the tangential stress with time for different cases are shown
in Figure 5 for the point of A. From Figure 5, we can clearly see the effects of cooling
processes and fluid diffusion on the tangential stress. It can be also seen that the variation

Table 2

Comparison of stresses at t D 86400s of four cases

Case 1, MPa Case 2, MPa Case 3, MPa Case 4, MPa

'!! at point P "30.65 "27.65 "25.14 "23.79
'rr at point B "23.61 "22.81 "24.66 "24.98
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of '!! at Point A (0, 0.1) on the wellbore wall in the coupled T-H-M system (case 3)
increases with time while the variation of '!! with time in the uncoupled system (case 4)
decreases slowly.

Comparison of Radial Stresses

Model results of the radial stress, '!! for these four cases are shown in Figures 6 to 8.
Figure 6 shows contours of radial stress at the time of 86400s for case 3. The magnitude
of the radial stress is equal to pore pressure. We also note that the gradient of the radial
stress along directions of + D 0 and , is larger than those of + D ˙,=2. Figure 7
shows variations of the tangential stress with radius at the time of 86400s for four cases.
The comparison of the compressive radial stress, 'rr , at point B of the wellbore wall
is given in Table 2 for t D 86400s. Model results illustrate that the magnitude of the
compressive radial stress, 'rr , in the vicinity of the wellbore wall at the direction + D 0ı

decreases when the temperature at the wellbore (comparing the results of Case 1 with
Case 2) decreases, and increases with the pore pressure (comparing the results of Case 2
with Case 3). Through comparing the magnitudes of 'rr in Figure 7 in the coupled
system (Case 3) and the uncoupled system (Case 4), we conclude that the magnitude of
the compressive radial stress in the coupled T-M-H system is smaller than that in the
uncoupled T-M-H system. The difference of 'rr between Case 3 and Case 4 increases as
the distance to the wellbore wall increases. Variations of the radial stress with time are
shown in Figure 8 for point B (0.3, 0.3) in the vicinity of wellbore wall. The significant
difference in 'rr exists between Case 3 and Case 4. The radial stress at point B decreases

Figure 6. Contours of radial stress (MPa) at time D 86400s for the case of fully coupled
mechanical-thermal-hydrological processes.
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Figure 7. Variations of radial stress (MPa) along the A-A section at time D 86400s for different

cases.

Figure 8. Variations of radial stress with time at Point B for different cases.
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with time for the first 5000s, and then increases with time thereafter. This is because
temperature transfers faster and its effect on the radius stress is larger than that of pore
pressure during the first 5000s, then the effect of pore pressure dominates.

Conclusions

In this study, a novel approach has been developed to solve the fully coupled hydrological,
thermal, and mechanical system in rocks. The uniqueness of this approach is that we solve
the coupled system in an interactive environment. This allows us to visualize the multi-
physical interactions without any difficulties. The validity of this approach has been
demonstrated through successful validation against available analytical and numerical
solutions for the one-dimensional isothermal and non-isothermal consolidation problem
and the simulation of coupled hydrological, mechanical, and thermal processes that affect
wellbore stability. Through these simulation examples, we summarize the advantages of
this novel approach as follows:

The full coupling of multi-physical processes in rocks was achieved in an interactive
environment. In this approach, we extend conventional models for the coupled mechanics
of solid deformation, fluid flow, and heat transfer into a single multi-physics model that
solves the coupled multiphysics, and does so simultaneously.

The interwoven constitutive relations among different physical systems are straight-
forwardly implemented into this single multi-physics model because of the interactive
environment. In this approach, the complex couplings of the various constitutive relations
are algorithmically translated into the coefficient matrices via the high-level symbolic
language of FEMLAB. This allows us to introduce any new constitutive relations easily.

Model results are readily presented and visualized both as stills and as movies.
By solving this single multi-physics model, we transform the complex science behind
coupled phenomena that may be readily incorporated into realistic models of physical
processes.
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