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SUMMARY

A solution is developed for the build-up, steady and post-arrest dissipative pore fluid pressure fields that
develop around a blunt penetrometer that self-embeds from freefall into the seabed. Arrest from freefall
considers deceleration under undrained conditions in a purely cohesive soil, with constant shear strength
with depth. The resulting decelerating velocity field is controlled by soil strength, geometric bearing
capacity factors, and inertial components. At low impact velocities the embedment process is controlled by
soil strength, and at high velocities by inertia. With the deceleration defined, a solution is evaluated for a
point normal dislocation penetrating in a poroelastic medium with a prescribed decelerating velocity.
Dynamic steady pressures, PD; develop relative to the penetrating tip geometry with their distribution
conditioned by the non-dimensional penetration rate, UD; incorporating impacting penetration rate,
consolidation coefficient and penetrometer radius, and the non-dimensional strength, ND; additionally
incorporating undrained shear strength of the sediment. Pore pressures develop to a steady peak magnitude
at the penetrometer tip, and drop as PD ¼ 1=xD with distance xD behind the tip and along the shaft. Peak
induced pressure magnitudes may be correlated with sediment permeabilities, post-arrest dissipation rates
may be correlated with consolidation coefficients, and depths of penetration may be correlated with shear
strengths. Together, these records enable strength and transport parameters to be recovered from lance
penetrometer data. Penetrometer data recorded off La Palma in the Canary Islands (J. Volcanol. Geotherm.
Res. 2000; 101:253) are used to recover permeabilities and consolidation coefficients from peak pressure
and dissipation response, respectively. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tethered and untethered penetrometers have been used for the determination of seabed [1] and
lakebed [2, 3] characteristics. Of prime interest here is the determination of fluid, mass (chemical)
and thermal fluxes on continental margins and in abyssal sediments [4], with ancillary interest in
strength parameters that define stability against submarine slope failure [5]. Mass, chemical and
thermal fluxes may be evaluated from differential fluid pressures, species concentrations or
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temperatures with depth along the embedded lance axis; these data must be combined with
Darcy’s, Fick’s or Fourier’s laws, respectively. Implicit in the evaluation of fluxes is the
assumption that permeability of the sediments may be independently defined.

Current methods of determining the permeability of the penetrated sediments involve first
evaluating hydraulic diffusivity from the dissipation rate of the penetration-induced pore fluid
pressures [6–10]. This requires that the strain field around the penetrometer is defined
by analytical [11–14] or numerical [15–17] methods, and pore pressures estimated by coupling
with an appropriate constitutive model [18, 19]. Permeability may be subsequently determined if
the drained deformation modulus [8, 10] may be recovered from laboratory testing of recovered
sediment samples, or in some cases from the reduction of tidally induced pore fluid pressures
[20–22].

Alternatively, the use of maximum pore pressure magnitudes developed during penetrometer
insertion provide a one-step method to determine permeability magnitudes in homogeneous
[23, 24] or layered [32] media. This procedure offers the potential to provide independent
corroboration of permeabilities where they are determined by other means, and permeability
magnitudes where they are otherwise unavailable.

The following addresses this complex problem [33] by evaluating penetration-induced pore
pressures around the decelerating probe. This is evaluated in two steps; first the rate of
deceleration of the lance as it impacts the soft seabed is determined, and this is then used to
evaluate the resulting pore pressure distributions that develop around the embedding tip and
shaft.

2. EMBEDMENT DECELERATION

Consider a thin lance falling through the water column that has reached terminal velocity, U0;
and subsequently impacts the soft sediments of the seabed, as illustrated in Figure 1. These soft
sediments are assumed cohesive only, and in the timeframe of deceleration of the lance, behave
as undrained, for the purposes of this first evaluation. The undrained cohesive strength, Su; is
assumed constant with depth, and the lance is sufficiently long that the tip-region is short in
comparison with overall length of the penetrometer. Where strength is linearly varying, an
average strength magnitude representative of the depth profile may be substituted. As the lance
tip, assumed blunt in this analysis, embeds within the soil, to a distance x0 below the seabed
surface, the force resisting embedment builds. The bearing capacity, qu; of the lance may be
defined in terms of the end-bearing area, Ap; and shaft area, As; as

qu ¼ ApðSuNc þ sv0Þ þ AsSu ð1Þ

where sv0 is the total stress, absent the sea pressure, at current tip embedment-depth, x0; and Nc

is the non-dimensional bearing capacity factor, typically approaching 9 for depth to diameter
ratios greater than 4.5 [25]. The rightmost two terms of stress and shaft friction vary linearly
with embedment depth, x0; and Equation (1) may be redefined as

qu ¼ ApSuNc þ ðApgs þ 2paSuÞx0 ð2Þ

where the probe diameter is 2a; and gs is the buoyant unit weight of the soil. Alternatively,
the bearing force, acting in the direction of negative x0; may be defined as a linear function of

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2005; 29:141–162

D. ELSWORTH AND D. S. LEE142



depth as

qu ¼ N 0
c þN 0

qx
0 ð3Þ

with N 0
c ¼ ApSuNc and N 0

q ¼ Apgs þ 2paSu: This enables a force balance to be completed on the
free-falling penetrometer as it embeds in the seabed, and the end-bearing force builds linearly
with embedment. Balancing the vertically downward absolute mass, w; and buoyant mass, wb of
the penetrometer with the vertically upward resistance, qu; of the combined end- and shaft-
resistance, yields, when balanced with inertial force,

w .xx0½t� ¼ wbg�N 0
c �N 0

qx
0½t� ð4Þ

The double overdot represents acceleration. The lance is rigid, and translates with the motion of
the tip, indexed in this relation as x0: Pressure drag and viscous drag forces of the penetrometer
in water are neglected}rather we prescribe the terminal velocity of the probe, U0: As the probe
transits from water to the seabed, this discontinuous transition is accommodated by the building
resistance of the soil, through N 0

c and N 0
q: The initial conditions are set at time t ¼ 0 when the

lance-tip first impacts the seabed at velocity, U0; as

x0½t ¼ 0� ¼ 0

’xx0½t ¼ 0� ¼ U0

ð5Þ
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Figure 1. Schematic of a lance falling at terminal velocity, U0; and impacting the seabed. For embedment,
the co-ordinate system is fixed to the seafloor as the lance self-embeds under undrained conditions. For
the evolving partially drained analysis of embedment-generated pore pressures, the co-ordinate system is

fixed to the penetrometer tip.
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Solving the differential equation (4) for the boundary conditions of Equation (5) enables the
progress of embedment with time to be defined as (see appendix for details)

’xx0½t� ¼ U0 cos

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5 ¼ U ð6Þ

for velocity, and

x0½t� ¼ U0

ffiffiffiffiffiffi
w

N 0
q

s
sin

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5 ð7Þ

for embedment depth, where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N 0

q=w
q

: These relations may be used to evaluate the
development of pore fluid pressures that result from penetration, where the requirement for
undrained penetration is relaxed. Pore pressures generated around the decelerating probe may
be determined from the approximate probe velocity as the unit decelerates.

3. DISLOCATION ANALYSIS

The velocity of penetration is defined by the previous total stress analysis using the undrained
strength parameters. The resulting pore pressures generated around the penetrometer shaft, and
their subsequent dissipation, are evaluated by an effective stress analysis. This is an accepted
method of simplifying complex behaviours [26]. Since the duration of penetrometer insertion
will be of the order of a few seconds, and the time for dissipation generally of the order of
minutes to days, this overlap in time is not serious. Since the resistance to insertion is defined
purely in terms of undrained cohesive strength, the insertion deceleration and subsequent
response will not be reliably determined where significant drainage occurs concurrent with
insertion.

The behaviour of a sharp penetrometer, moving within a poroelastic medium, may be
represented by a moving volumetric dislocation. The incremental form of this is a point
volumetric dislocation, of volume dV ðL3Þ; representing the dilation in unit time, t; subjected to
a volumetric dilation rate, vðL3T�1Þ; as dV ¼ v dt: For t50 a volumetric dislocation is
introduced at the origin ðx ¼ y ¼ z ¼ 0Þ with the poroelastic medium moving at velocity þU in
the x-direction of the fixed Cartesian co-ordinate system, representing a dislocation migrating
within an infinite medium, as illustrated in Figure 1. The velocity of migration is U ¼ U0 cos½bt�;
and the location at time, t; is x0½t� ¼ U0=b sin½bt�; where b ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N 0

q=w
q

as identified in Equations
(2), (3) and (4). The position of a point located at ðx; y; zÞ at time t; would have been ððx�
U0=b sin½b½t� t��Þ; y; zÞ at time t: This migrating co-ordinate system enables the behaviour to be
defined for a static dislocation [27, 28].

p� ps ¼
c dV

4pR3

m
k

%xx3

2
ffiffiffi
p

p e�
%xx2=4 ð8Þ

with %xx ¼ %RR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðt� tÞ

p
and %RR2 ¼ ½x�U0=b sin½b½t� t���2 þ y2 þ z2: The material properties

defining the medium represent absolute pore fluid pressure, p; relative to the initial static fluid
pressure, ps; permeability, k; hydraulic diffusivity, c and dynamic viscosity of the fluid, m:
Physically, this solution represents the radially diminishing and spherically symmetric fluid
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overpressure field that is developed when a volume dilation is opened at the origin (0; 0; 0). The
result is identical to the pressures induced by the instantaneous injection of a volume of fluid,
dV : Substituting into Equation (8) for the incremental rate of dilation as dV ¼ v dt; and
integrating in time yields,

p� ps ¼
Z t

0

cv

4p %RR3

m
k

%xx3

2
ffiffiffi
p

p e�
%xx2=4 dt ð9Þ

where v is the rate of volume change ðL3T�1Þ:
This is similar the standard result reported [28] for a penetrometer moving at constant

velocity, v: To determine the form of the fluid pressure field that develops around a decelerating
penetrometer, the response for a point volumetric dislocation must be distributed to represent
the moving feature. Consider the blunt cylindrical tip of a penetrometer of radius, a; as
illustrated in Figure 1. The projected area, dA; of a blunt tipped penetrometer is defined as

dA ¼ pa2 ð10Þ

For an incremental advance of the penetrometer of U dt in time dt; the distribution of volume
is dV ¼ dAU dt; and substituting the relation of Equation (10), and noting from the previous
that dV ¼ v dt; then,

v ¼ pa2U ¼ pa2U0 cos½b½t� t�� ð11Þ

This may be substituted directly into Equation (9) to yield

p� ps ¼
m
k

U0a
2c

8
ffiffiffi
p

p Z t

0

*x3x3

*R3R3
e�

*x2x2=4 cos½bðt� tÞ� dt ð12Þ

where the tilde overbar denotes inclusion of the variable co-ordinate of integration as
*xx ¼ x�U0=b sin½b½t� t�� and

*RR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
*xx2 þ y2 þ z2

p
*xx ¼

*RRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðt� tÞ

p ð13Þ

representing migrating co-ordinates and a reciprocal non-dimensional time.

3.1. Mechanistic and geometric methods

The deforming medium is assumed poroelastic, and correspondingly neglects processes of
failure local to the penetrometer tip. These models have been previously applied to represent the
dissipation process that results around an arrested penetrometer [23]. Pressure dissipation
results for dislocation models [23] fall within a narrow band of responses for cavity expansion [6]
and strain path [8] methods. Cavity expansion and strain path models are shown well-suited in
representing complex material models, but are incapable of accommodating partial drainage
concurrent with penetration. Conversely, dislocation models represent simple material models
but readily accommodate important conditions of partial drainage.

The uniformity of each of these approaches may be indexed by the time taken to reach 50%
dissipation of pore fluid pressures, t50D ; where t50D ¼ 4ct=a2: For pressures measured at the tip, the
magnitudes of t50D ’s are 16, 4, and 2, for strain path, cavity expansion, and dislocation methods,
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respectively [23]. For shaft locations, 10 radii behind the tip ðx ¼ 10aÞ the stress path and
dislocation methods yield t50D ’s of 1:2� 102 and 1:5� 102; respectively [23].

Penetration into the seabed is resisted by a combination of shaft adhesion and end-bearing. In
the event that shaft adhesion cannot be sustained, for example by the development of separation
during insertion, its effect may be removed. In this instance the resistance to penetration will be
near constant with insertion. At lance embedment depth to diameter ratios greater than 4.5, the
end bearing capacity factor, Nc; will approach 9 [25]. This corresponds to lance penetration to
180 mm (for a 40 mm diameter probe), or 10% of the penetration depth. This is readily
obtained. A uniform strength is assumed with depth, although linearly increasing strength may
be accommodated, resulting in a quadratically increasing resistance with penetrations depth.
This case has not been evaluated, but may be approximated by choosing a constant strength
that is representative of the average strength over the range of depths penetrated.

Since the solution represents penetration within an infinite medium, the influence of the free
surface is not accommodated. Magnitudes of induced pore water pressures close to the mudline
will not be well represented. Induced undrained pore pressures developed by the inflation of a
static dislocation within a half-space [29], may be compared with the current solution, by
comparing magnitudes of mean stress. The mean stresses predicted for the half-space solution,
along the trajectory of the penetrometer, but for a static dilation, note a maximum error (over-
estimation of pressures by the infinite solution) of less than 10% for pressures measured within
one-quarter ðxD ¼ 1

4
UD=ND) of the burial depth of the tip below the mudline. This error

increases to not more than 40% for pressures measured within one-half ðxD ¼ 1
2
UD=NDÞ of the

burial depth of the tip. These errors will more significantly affect data reduction methods that
rely on peak pressure magnitudes, than those that rely on rates of dissipation of relative pore
pressure magnitudes. Rates in the latter will be little affected, and peak pore pressures measured
both at the tip, and at the quarter-depth location on the probe will be little affected.

3.2. Non-dimensional parameters

The behaviour of the system may be defined in terms of the non-dimensional parameters of
excess fluid pressure, PD; penetration rate, UD; strength, ND; and time, tD; as

PD ¼
4ðp� psÞ

U0a

k

m
ð14Þ

UD ¼
U0a

2c
ð15Þ

ND ¼
ba2

2c
ð16Þ

tD ¼
4ct

a2
ð17Þ

ðxD; yD; zDÞ ¼
1

a
ðx; y; zÞ ð18Þ

with *RRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
*xx2D þ y2D þ z2D

q
; *xxD ¼ *xx=a or *xxD ¼ xD �UD=ND sin½1

2
NDðtD � tDÞ�: These para-

meters give, respectively, non-dimensional pressures, impact velocities, strength, time, and
locations.
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These non-dimensional parameters may be substituted into Equation (12) to give, in final
form the behaviour around a blunt penetrometer as

PD ¼
1ffiffiffi
p

p Z tD

0

e�
*RR2
D
=ðtD�tDÞ

½tD � tD�3=2
cos 1

2
NDðtD � tDÞ

� �
dtD ð19Þ

This enables magnitudes of pore pressure build-up to be determined following initiation of
penetration within an infinite medium. Application to this is described in the following.

4. PARAMETRIC BEHAVIOUR

4.1. Post-initiation pressure build-up

The non-dimensional pressure, PD; defined in Equation (19), may be used to define the build-up
of pressure following the impact of the penetrometer with the surface of the seabed. The
penetrometer impacts the seabed at velocity U0; represented in dimensionless magnitude as UD;
and decelerates to arrest. Both the length of embedment at arrest, and the time to arrest may be
evaluated from Equations (A9). The instant of impact is taken as time t ¼ 0; when the velocity is
U0; enabling the time to arrest to be defined in non-dimensional terms as, t0D ¼ p=ND: At this
time, the embedment depth is a maximum, with the seabed present to a height of x0Dmaximum ¼
UD=ND along the shaft. For steady penetration, the peak magnitude of dimensionless pressure is
defined as PD ¼ ð1=RDÞe�UDðRD�xDÞ [28], which for locations on the shaft ðRD ¼ xDÞ asymptotes
to PDxD ¼ 1: This normalizing parameter is used in the representation of normalized pressure
data in the following parametric investigation.

Pressure build-up response may be evaluated over the period from impact to arrest, for
05tD5t0D; and for a variety of impact velocities and material strengths. Impact velocity is
represented by UD; and material strength by ND: For soft seabed clays with undrained strength,
Su; of the order of 10–50 kN=m2; magnitudes of ND are in the range 1–1000. It is convenient to
compare the build-up of pore pressures with respect to a given location of the transducer at xD:
To make comparisons feasible, we choose the transducer location with respect to the
embedment depth, ND=UD: Correspondingly, Figure 2(a) represents the pressure build-up for
the transducer placed one-half of the distance back from the penetrometer tip, or one-half of the
distance from the seabed, at full embedment. Axes of the figure are selected that take advantage
of the known behavior of pressure build-up. Non-dimensional pressures are plotted as the
product PDxD; since it is known that the peak pressures, shown in this format asymptote to
unity, as PDxD ! 1: Time is reported as tDND=p; since we know that arrest occurs at t0D ¼
p=ND; hence arrest occurs at tDND=p ¼ 1:

Apparent from Figure 2(a) is that at very high impact velocities, with UD5101; the pressure
response is rapid and corresponds to tDND=p ¼ 2=p arcsin½x=x0maximum�; where x0maximum is the
embedment length at arrest, and x is the location of the pressure transducer behind the
penetrometer tip. This can be alternately reported with x=x0maximum ¼ 1=f where 1=f is the
proportion of the embedment length that denotes the transducer location. This represents the
time that the transducer enters the sharply defined pressure bulb created by the penetrometer as
it enters the seabed. For Figure 2(a) this time is represented by tDND=p ¼ 1

3
:

For slower impact velocities, the pressure build-up is given by the series of parallel curves,
each offset by two orders-of-magnitude in dimensionless time, or one order-of-magnitude in
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dimensionless root-time. For a given impact velocity, U0; the magnitude of UD decreases by one
order-of-magnitude with an increase in permeability of one order of-magnitude, and non-
dimensional time also increases by one order-of-magnitude. Hence, if Figure 2(a) is alternatively
replotted with the ordinate as tDND=pU2

D; as shown in Figure 3(a), the response for all slow
impacts overprint as a single response for UD410�1; and the rapid impact behaviour shows
increasingly rapid response time.

As the pressure monitoring location is moved close to the tip as one-tenth of the embedment
depth ðxD ¼ 1

10
UD=NDÞ and one-hundredth of the embedment depth ðxD ¼ 1

100
UD=NDÞ as

illustrated in Figures 2(b) and (c), the diffusive response is shifted in time. This represents a
quicker response to reach steady state, relative to time to arrest as permeability increases. In
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Figure 2. Build-up of non-dimensional pressure, PDxD; with time, tDND=p; for a
selected pressure monitoring location on the penetrometer shaft, at ordinate (a) xD ¼
1
2
UD=ND; (b) xD ¼ 1

10
UD=ND; and (c) xD ¼ 1
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UD=ND; behind the penetrometer tip.
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the penetrometer tip. Pressure response is for impact at various velocities, UD:
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Figure 2(b) and (c) the diffusive response is merely shifted in time by two orders-of-magnitude
for a one order-of-magnitude increase in permeability, and hence, UD: For the pressure build-up
due to the transducer moving into the pressure bulb, generated instantaneously with insertion,
the asymptotic values of tDND=p are 0.064 and 0.0064 for the probes with a transducer one-
tenth (1=f ¼ 1

10
in Figure 2(b)) and one-hundredth (1=f ¼ 1

100
in Figure 2(c)) of the embedment

length from the tip, respectively. This behavior is also apparent for the modified ordinates of
Figures 3(b) and (c).

4.2. Peak pressure magnitudes

Unlike penetration at constant velocity, U; where the pressures build to a dynamic steady state
[28] the peak pressures of interest for the decelerating penetrometer, occur at the time of
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penetrometer arrest. From this state the pressures then dissipate. The distribution of peak
pressures on the shaft of a decelerating penetrometer may be determined from tj ’xx0¼0; defined in
equation (A5), and resubstituted into equation (19), as t0D ¼ p=ND: Since the penetrometer may
arrest before it reaches a steady pressure distribution, it is likely that the pressure induced
around a decelerating penetrometer may, in some circumstances, be less than for steady
penetration.

The steady pressure distribution around a blunt penetrometer under constant velocity
penetration of U; is defined as [28]

PD ¼
1

RD
e�UDðRD�xDÞ ð20Þ

where the non-dimensional penetration velocity is UD ¼ Ua=2c: Behind the blunt tip of the
penetrometer, and on the shaft, this reduces to PD ¼ 1=xD; allowing direct comparison with
peak pressure magnitudes for the decelerating penetrometer. Most conveniently, this is plotted
as log xD versus log PD; where Equation (20) plots as a straight line, as apparent in Figure 4. For
a decelerating penetrometer, the results asymptote to the distribution defined for UD410�1 for
slow impact. Under these conditions the pore pressure distribution around the tip has not
reached the dynamic steady state represented by the straight line for PD ¼ 1=xD: The pressure
distribution for slow penetration will be near-spherical around the tip, and is influenced by the
aggregate velocity along the path of the penetrometer, terminating at zero velocity.

Where the penetrometer impacts at a higher velocity, for example for UD5100; the pressure
distribution asymptotes to the steady behaviour. As non-dimensional impact velocities become
larger, the match to the steady behaviour becomes closer, mainly because the embedment length
increases proportionally to UD as x0D ¼ UD=ND: These curves will be self-similar as the
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embedment length increases. Note that the pressure distributions are not truncated at the
seabed, for xD > UD=ND; because the medium is considered infinite, rather than semi-infinite,
even though the effect of penetration is only applied following the presumed impact at the
seabed at velocity U0: As discussed previously, this effect will be small for typical embedment
length.

The form of the contoured distribution of pressures around the tip is shown in Figure 5. For
high velocity impacts, the pressure distribution is cylindrical around the penetrometer,
and markedly decreases in spread away from the penetrometer with an increase in non-
dimensional impact velocity, UD: As the impact velocity is reduced, the pressure distribution
becomes spherical, representing the dominant influence of the most recent portion of the
advancing penetrometer, local to the tip. As non-dimensional impact velocities are reduced
below UD510�1; the distributions become identical, indicating the control of pressure diffusion
in dissipating the pressures, and a reduction in the relative influence of the migrating
penetrometer. Importantly, the contoured representations are not truncated at the seabed
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surface, as the diffusive solution is for an infinite medium, even though the penetrometer was
only ‘turned-on’ as it impacted the seabed surface.

4.3. Post-arrest

Behaviour, post-arrest may be evaluated by superposing a moving dislocation of negative
strength, beginning at the time of arrest, tj ’xx0¼0; defined as t0D; over the non-arrested moving
dislocation. Physically, the dislocation represents the insertion of the steel lance into the seabed.
Rather than arresting the penetrometer, a more convenient mathematical construct is to allow
the lance to continue on its trajectory. A concurrent and colinear lance shadows it, but of
opposite sense and is turned-on only at the time of arrest. A dilation plus a colocated
contraction exactly cancel each other, resulting in a null effect. Behavior at any time, tD > t0D;
may be determined from the coincident and colinear moving dislocations, the first representing
dilation from 0 ! tD and the second representing an equivalent but opposite contractile
volumetric dislocation from t0D ! tD beginning from the location of the arrested tip at time t0D:
The system of equations follow directly from Equation (19) as

PD ¼
1ffiffiffi
p

p Z tD

0

e�
*RR2
D
=ðtD�tDÞ

½tD � tD�3=2
cos 1

2
NDðtD � tDÞ

� �
dtD

�
1ffiffiffi
p

p Z tD

t0
D

e�
*RR2
D
=ðtD�tDÞ

½tD � tD�3=2
cos 1

2NDðtD � tDÞ
� �

dtD ð21Þ

or alternatively as

PD ¼
1ffiffiffi
p

p Z t0
D

0

e�
*RR2
D
=ðtD�tDÞ

½tD � tD�3=2
cos 1

2NDðtD � tDÞ
� �

dtD ð22Þ

where the co-ordinate system migrates with the continuously migrating dislocation, post-arrest,
and pressures are referenced relative to this co-ordinate system. To transform to co-ordinates
relative to the arrested penetrometer, a periodic transformation must be applied. Where the co-
ordinate system ½ #xx; #yy; #zz� is chosen to represent locations relative to the arrested penetrometer (½ #xx�
is the distance of the pressure-measuring transducer behind the penetrometer tip), the linkage
between the two co-ordinate systems are

x ¼ #xx�
U0

b
þ

U0

b
sin½bðtÞ�

y ¼ #yy

z ¼ #zz

ð23Þ

where arrest always occurs at time, tarrest ¼ t0 ¼ p=2b and

*xx ¼ x�
U0

b
sin½bðt� tÞ� ð24Þ

The same non-dimensional co-ordinate system may be invoked, to yield the co-ordinate
transform

xD ¼ #xxD �
UD

ND
1� sin 1

2
NDtD

� �� �
ð25Þ
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or *xxD ¼ #xxD þUD=ND½sin½ 12NDtD� � 1� �UD=ND sin½ 1
2
ND½tD � tD�� by substituting Equation

(25) into *RRD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
*xx2D þ y2D þ z2D

q
yields for Equation (24) where the time to arrest is t0D ¼ p=ND

and enables equation (21) to be directly evaluated.

Figures 6 describes the dissipation behaviour following arrest at time t0D: The time since arrest
is defined as (tD � t0D), and these plots, for transducer locations at 1

2
; 1

10
and 1

100
th of the

embedment length from the tip follow directly from the build-up data of Figure 2. Maximum
magnitudes of PDxD track across from the build-up curves, setting the peak pressure that falls
following arrest. The dissipation behaviour is included in Figure 6(a) for a pressure transducer
located one-half of the embedment length back from the penetrometer tip. Similar to the
pressure build-up behaviour, dissipation is rapid for low non-dimensional impact velocities, and
slow for higher impact velocities. As the pressure transducer is moved closer to the penetrometer
tip, as in Figure 6(b) and (c), the pore pressures have a greater opportunity to build to the steady
magnitude of PDxD ¼ 1:
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The starting magnitudes for the pressures in Figure 6, are the same pressures recorded at the
termination of penetration that are represented in Figure 2. Thus, the pressure trace for UD ¼
100 in Figure 6(a) is a direct continuation for PDxD in Figure 2(a). However, since Figures 6 is
shown with the logarithm of time, the beginning location is not directly at the cessation of
penetration ðtD � t0D ¼ 0Þ; but some time after it, when some traces have already partially
dissipated (e.g. for UD ¼ 10�1 in Figure 6(c)).

At low magnitudes of non-dimensional penetration velocity, UD5100; the dissipation curves
are all of similar form. At high impact velocities, UD5101; the dissipation response is rapid and
results from the thin pressure ‘skin’ that develops around the penetrometer shaft (Figure 5). The
rapid dissipation profile develops at ðtD � t0DÞND=p ¼ 2=p arcsin½x=x0maximum�; as apparent in
Figure 6(a)–(c). These results enable the time to 50% pressure dissipation, t50; to be determined,
enabling hydraulic diffusivity, or consolidation coefficient, c; to be determined from the
dissipation response.

5. DATA ANALYSIS

For build-up behaviour, the generalized response is shown in Figure 7(a). For low penetration
velocities, the build-up, for multiple ND; is given if pressure curves are developed relative to a
non-dimensioned time tDN

2
D=pf

2; where f represents the location of the transducer relative to
the tip, as 1=f ¼ x=x0maximum: These pressure responses are correct for multiple magnitudes of
ND; and geometry, f ; and are applicable for UD4100: As penetration rate increases, the build-
up response is near instantaneous, and is given by tDND=p ¼ 2=p arcsin½1=f �: Correspondingly,
Figure 7(a) represents a full suite of pressure responses. This figure enables the build-up
response to be evaluated, although the build-up response may be truncated at tDND=p ¼ 1;
correspondingly to the time of arrest.

If the time of arrest is known, the peak pressure magnitude, corresponding to that time may
be defined. In the limit, PDxD ¼ 1; and confirms the PD ¼ 1=xD pressure distribution along the
shaft, apparent for steady penetration, as in Equation (20). Secondly, since the non-dimensional
pressure, PD; includes the magnitude of permeability, k; the peak generated pressure may be
used to evaluate transport parameters. From the definition of dimensionless pressure, PD; of
Equation (14), permeability may be determined for peak insertion pressure, p� ps; as

k

m
¼

U0a

4ðp� psÞxD
ð26Þ

provided behaviour has asymptoted to PDxD ¼ 1: The appropriateness of using PDxD ¼ 1 as a
method of evaluating permeability, may be determined from dissipation data, used to evaluate
UD and from the form of the tip–local pressure distribution defined in Figure 5.

The generalized pressure dissipation response is included in Figure 7(b). The time-scale for
this plot is different from that for pressure build-up. The slow insertion velocity response, is
normalized for magnitudes of U2

D=ND4102; rather than for magnitudes of UD; as represented in
Figure 7(a) for build-up. For higher penetration rates, corresponding to U2

D=ND > 104; the
dissipation is rapid and occurs at time ðtD � t0DÞND=p ffi 10�2: This also corresponds to the time
to 50% dissipation. For the slower penetration rates, ðtD � t0DÞ50=pN

2
D=U

2
D ¼ 10�4; and

coefficient of consolidation may be evaluated from the time-dependent dissipation of
penetration-developed pore pressures. These are determined by matching actual time–pressure
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responses with those for dimensionless-time and dimensionless-pressure to relate time directly
with diffusive time, tD; and thereby evaluate consolidation coefficient, c:

This full suite of penetration induced pore fluid pressure and subsequent dissipation responses
offer the potential to better understand tip-local processes and the determination of sediment
transport parameters from recorded pore pressure response.
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5.1. Data reduction

Pore pressure response from six PUPPI (Pop-up pore pressure instrument) deployments [30] off

La Palma, in the Canary Islands, is available, together with geotechnical data recovered from

sediment cores [31]. The PUPPI instruments comprise a thin lance with a tapered tip, capped by

a ballasted instrument package. The lance may be tipped with a thinner-diameter stinger tip that

extends from the main lance. The instrument may be ballasted to reach depths in excess of

6000 m: Lances are available in a variety of lengths. These are 6, 4 (50 mm diameter), or 3

ð38 mmÞ metres, with the following data [30] gathered using the latter two types. For the 4 m

probe, the ports are at 2, 3, and 4 mbsf, and for the 3 m propbe, at 1.5, 2.25, and 3 mbsf. The

PUPPI deployments are co-located with the sediment sample sites, spread over about 400 km2:
Properties of the shallow cores are variable but record porosities in the range of � 65–75%,

shear strength of the order of � 2–6 kPa with no obvious tread with depth, and water contents

from � 60 to 90%.
Standard constant-stress consolidation (oedometer) tests yield consolidation coefficients, c; in

the range � 3:5–8:2� 10�7 m2 s�1; coefficients of compressibility, mv; 0.5–1:5 MPa�1; these
data enable laboratory derived permeabilities to be evaluated from k ¼ c �mv � m as 6� 10�16 to
6� 10�15 m2: Vane shear strength, su; to effective stress ratio, Su=s0; in the range � 0:5–3 in the
upper 0:5 m and� 0:2–0.5 below that denote the material as changing from overconsolidated at
the seafloor, to normally consolidated below 0:5 m: The degree of overconsolidation decreases
with depth, and is normally consolidated below about 1 m:

Pore pressure data from the PUPPI deployments [30] enable the evaluation of fluid
transport and soil deformability parameters to be determined. The PUPPI deployments
fully embed ðxmax ¼ 3 mÞ; with UD � 104: The time to 50% dissipation of excess pore
pressure enables the coefficient of consolidation to be defined of the order of 10�6 m2 s�1:
Tidal loading enables the estimation of coefficient of soil compressibility, mv; in the range
6:2� 10�9–1:5� 10�7 Pa�1: These are congruent with the magnitudes evaluated from
laboratory tests, and enable permeabilities to be evaluated in the range 2� 10�18–6�
10�16 m2; that span a range two orders of magnitude lower than those determined from
laboratory testing.

In this work we propose that permeability magnitudes may be determined in two ways. They
may be recovered from peak pressure magnitudes as a direct index of permeability, or the
pressure dissipation rate may be used to define the consolidation coefficient, c; and used together
with the tidally measured mv to then obtain permeability. In the first approach we use the peak
pressure data through use of Equation (26). For an impact velocity, U0; of 0:4 m=s (impact
velocity is determined from the recorded rate of pressure, measured during lance free-fall
(Urgeles, personal communication)), a penetration radius, a; of 0:02 m; a location of the
pressure port ðxÞ at 1:5 m behind the tip (3 m probe), a fluid viscosity, m; of 8:9� 10�4 Pa s; and
peak pressure ðp� psÞ in the range, 0.4–80 kPa; permeabilities may be evaluated by substitution
into Equation (26). These permeability estimates are in the range 2� 10�13–2� 10�11 m2; and
are reported in Table I.

Typical insertion pressures peak at arrest, and decay exponentially to background in situ
magnitudes over tens of minutes to a few hours [30] and are shown in general form overprinted
on Figure 7(b). The narrow range of shear strength magnitudes (2–6 kPa), and broad range of
peak pore pressures, spanning two orders-of-magnitude, suggest the strong influence of
drainage, and thereby permeability, in controlling the insertion response.
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With permeability determined from these data, coefficient of consolidation may be
independently determined directly from the dissipation response. The time to 50% dissipation
may be recovered from Figure 7(b). Two different responses are evident, either for U2

D=ND5
104; and for U2

D=ND > 104: Assuming first that for U2
D=ND5104; then the order of magnitude

separation, in time, of each of the curves yields

ðtD � t0DÞ50
ND

p
ND

U2
D

ffi 10�4 ð27Þ

Substituting from Equations (15)–(17) into Equation (27) yield, after rearrangement, the
consolidation coefficient, c; as

c ¼
U2

0 p 10�4

4 ðt� t0Þ50 b2
ð28Þ

For an impact velocity, U0 ¼ 0:4 ms�1; a measured undrained shear strength of Su ¼ 10 kPa; a
penetrometer mass of 50 kg; and a penetrometer radius, a; of 0:02 m; results in a magnitude of b
of the order of 2:3 s�1; and UD � 104: A time to 50% dissipation of pore pressures ðt� t0Þ50 of
the order of 500 s [30] yields a consolidation coefficient, c; of � 10�8 m2s�1: However, we have
assumed U2

D=ND5104; and must check this. Substituting the evaluated magnitude of
consolidation coefficient, yields U2

D=ND ¼ 7� 106; which violates the initial assumption U2
D=

ND5104: Alternatively, from Figure 7(b), note that for U2
D=ND > 104; then ðtD � t0DÞ50ND=p ¼

10�2; but this expression does not allow an absolute magnitude of c to be evaluated. Instead, we
note that since U2

D=ND > 104; then substituting as before, c57� 10�5 m2 s�1:
A second approach to determine permeabilities is to use the consolidation coefficient

evaluated from insertion-pressure decay, together with the soil compressibility determined
from either the tidal response [30] or from the laboratory data [31]. Using Equation (28)
for ðt� t0Þ50 � 500 s; UD ¼ 0:4 ms�1; and b ¼ 2:3 s�1 yields a consolidation coefficient of
10�7 ms�2; and from k ¼ c mv m; results in permeabilities in the range 10�19 m2 (from the tidal
response data) to 10�16 m2 (from the laboratory test data).

Table I. Field transport and soil compressibility data obtained from laboratory and in situ testing
of La Palma, Canary Islands.

Laboratory data PUPPI

Parameter

PUPPI pressure decay

(Urgeles et al. [30])

(Roberts and

Cramp [31])

PUPPI peak pressuren

(This work)

dissipationy

(This work)

Coefficient of

consolidation

1:3� 10�821� 10�4 3:5� 1027 � 8:2� 10�7 57� 10�5 1� 10�7

c ½m2 s�1�
Coefficient of soil

compressibility

6:2� 10�921:5� 10�7 5� 10�721:5� 10�6 } }

mv ½Pa�1�
Permeability 2:5� 10�1826:6� 10�16 6� 10�1626� 10�15 2� 10�1322� 10�11 10�19210�16

k ½m2�

nUsing the calculation sequence: permeability determined from Equation (27), and coefficient of consolidation
determined from dissipation response using Figure 7(b).
yUsing the calculation sequence: consolidation coefficient determinated from dissipation response using Figure 7(b), and
permeability evaluated from k ¼ c � m �mv; with mv from laboratory data.
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Potential permeabilities span the broad range 10�19–10�11 m2: The highest permeabilities
result from the peak pressure method, (10�13–10�11 m2), and are larger than the laboratory
derived values (10�16–10�15 m2). Pressure-decay derived results are roughly congruent whether
derived from static solutions (10�18–10�16 m2) [26, 30], or from the dynamic solution developed
here (10�19–10�16 m2). Unfortunately the suite of results remain inconclusive. The laboratory
data, absent effects of sample disturbance, should be broadly representative of behavior at the
spatial scale of the size of an individual core. Permeabilities at larger spatial scales, perhaps
sampled by the penetrometer-induced pressure bulb, would likely be higher than the laboratory-
derived data. However, the peak pressure derived permeabilities are 2–3 orders of magnitude
larger. These high permeability predictions may be conditioned by rapid pressure dissipation
occasioned by the low confinement or by poor sealing along the penetrometer shaft. Conversely,
large-scale permeabilities recovered from the dissipation response are considerably lower than
the laboratory-derived data in the range (10�19–10�16 m2). That these permeabilities are lower
than laboratory-derived values is more difficult to explain, although this two order-of-
magnitude mismatch is fully accommodated in the stiffer large-scale modulus sampled by tidal
loading, that obviates the softening effects of sampling disturbance. The difficult seafloor
sampling environment makes the definitive selection of any one set of soil parameters difficult.

6. CONCLUSIONS

A theory is developed to represent the build-up and dissipation of pore pressures that result
around a decelerating blunt penetrometer as it embeds within a poroelastic seabed. Pressure
build-up and dissipation results have been developed for the case of a single prescribed non-
dimensional strength, ND ¼ 1; and for three different monitoring locations (xD ¼ 1

2
UD=ND;

xD ¼ 1
10
UD=ND; 1

100
UD=ND). This magnitude was selected as representation of lower-range

seabed sediment strengths. These results may be generalized for a range of ND values,
representing various strengths, by selecting appropriate groupings of non-dimensional
parameters. These parameter groups are different for build-up and for dissipation.

Although developed for nominally linear materials, the solutions provide mechanisms to
evaluate transport properties of the penetrated seabed sediments. Two methods are demon-
strated as feasible. The first involves the use of peak-penetration-induced pressure as a proxy for
permeability}this enables the one-step evaluation of permeability, that is independent of both
drained compressibility measurements on recovered cores, or correlations with tidally forced
pore-fluid pressures. The second method relates the dissipation rate of pore pressures to
consolidation coefficient, c: If drained soil compressibility data are available for the sediment, the
permeability may be straightforwardly evaluated, as the product of consolidation coefficient,
fluid viscosity, and soil compressibility. From this example data set, permeability magnitudes
derived from peak pressure data are uniformly higher than those derived using pressure decay,
with the latter results pre-conditioned by laboratory-derived soil compressibility data.

APPENDIX A

The equation

w .xx0½t� ¼ wbg�N 0
c �N 0

qx
0½t� ðA1Þ
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may be solved where initial conditions are set at time t ¼ 0 when the lance-tip first impacts the
seabed at velocity, U0; as

x0½t ¼ 0� ¼ 0

’xx0½t ¼ 0� ¼ U0

ðA2Þ

Solving the differential equation (A1) for the boundary conditions of Equation (A2) enables the
progress of embedment with time to be defined as

x0½t� ¼
½gwb �N 0

c�
N 0

q

1� cos

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5

2
4

3
5þU0

ffiffiffiffiffiffi
w

N 0
q

s
sin

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5 ðA3Þ

and for the change in velocity, ’xx0½t�; with time as

’xx0½t� ¼
½gwb �N 0

c�
N 0

q

ffiffiffiffiffiffi
N 0

q

w

s
sin

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5þU0 cos

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5 ðA4Þ

In the solutions for both embedment length and velocity, the two terms represent, respectively,
non-inertial penetration under self-weight (first term), and the inertial component of the lance
(second term). Solving for the time until arrest is possible by setting Equation (A4) to zero as
’xx0½t� ¼ 0 when deceleration is complete. This yields

tj ’xx0¼0 ¼

ffiffiffiffiffiffi
w

N 0
q

s
arctan �

U0N
0
q

½gwb �N 0
c�

ffiffiffiffiffiffi
w

N 0
q

s2
4

3
5 ðA5Þ

for the time to arrest, or alternatively the embedment length x0max; as

x0max ¼
gwb �N 0

c

N 0
q

" #
þ

gwb �N 0
c

N 0
q

" #2

�
N 0

q

w

1

U0
þU0

ffiffiffiffiffiffi
w

N 0
q

s2
4

3
5 sin

ffiffiffiffiffiffi
N 0

q

w

s
t

������
’xx0¼0

2
4

3
5 ðA6Þ

This complex relation may be simplified by realizing there are two regimes of penetration; that
where inertial effects are negligible, for small U0; and alternatively where inertial effects
dominate. From Equation (A4), at slow penetration velocities, as U0 ! 0 then

U05
½gwb �N 0

c�
N 0

q

ffiffiffiffiffiffi
N 0

q

w

s
ðA7Þ

and t
ffiffiffiffiffiffiffiffiffiffiffiffi
N 0

q=w
q

¼ 0: Substituting this into Equation (A3) yields a trivial solution of zero
embedment as x0jmax ¼ 0: This condition is met when N 0

c4N 0
q; and surface bearing capacity

greatly exceeds the influence of bearing at depth. The corollary to the non-inertial condition is
where the impact velocity is comparatively large. For this condition,

U04
½gwb �N 0

c�
N 0

q

ffiffiffiffiffiffi
N 0

q

w

s
then from Equation ðA4Þ

ffiffiffiffiffiffi
N 0

q

w

s
t ¼

p
2

ðA8Þ
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and substituting into Equation (A3) results in a maximum embedment depth of, and time to
arrest of,

x0jmax ¼ U0

ffiffiffiffiffiffi
w

N 0
q

s
at time t ¼

p
2

ffiffiffiffiffiffi
w

N 0
q

s
ðA9Þ

The consequence of Equation (A9) is that shear strength, Su; may be determined from either
knowledge of the impact velocity and embedment length, or from knowledge of the time to
decelerate to zero velocity. Each reduction method enables N 0

q to be determined, and hence Su; if
lance geometry and weight are known. An alternative to using a point measurement of time-to-
arrest or embedment-length, is to fit the recorded velocity history, to the rearranged Equation
(A4) as

N 0
q ¼ arccos

’xx0½t�
U0

� � ffiffiffiffi
w

p
t

" #2

ðA10Þ

This enables N 0
q; and hence Su to be recovered from the deceleration history. Where the impact

velocity, U0; is significant, as U04½gwb �N 0
c�=n

0
q

ffiffiffiffiffiffiffiffiffiffiffiffi
N 0

q=w
q

; then the embedment history simplifies
to

’xx0½t� ¼ U0 cos

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5 ¼ U ðA11Þ

for velocity, and

x0½t� ¼ U0

ffiffiffiffiffiffi
w

N 0
q

s
sin

ffiffiffiffiffiffi
N 0

q

w

s
t

2
4

3
5 ðA12Þ

for embedment depth.

APPENDIX B

Nomenclature

a penetrometer radius, L
b ratio of side adhesion to penetrometer mass, ST�1

c coefficient of consolidation, L2T�1

k absolute permeability, L2

Nc dimensionless bearing capacity factor, }
ND dimensionless strength, }
PD dimensionless pressure, }
p absolute pore fluid pressure, FL�2

ps initial static fluid pressure, FL�2
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p� ps excess pore pressure, FL�2

qu bearing capacity, FL�2

R radius of interest ðR2 ¼ x2 þ y2 þ z2Þ; L
Su undrained cohesive strength, FL�2

t time (current), T
tD dimensionless time (current), }
t0D dimensionless time of penetrometer arrest, }
U penetration rate, LT�1

U0 terminal velocity, LT�1

UD dimensionless penetration rate, }
w mass of penetrometer, FL�1T2

wb buoyant mass of penetrometer, FL�1T2

xD; yD; zD dimensionless Cartesian co-ordinates ðx=a; y=a; z=aÞ; }
x location where the excess pore pressure is recorded, L
x0 distance below the seabed surface, L
x dimensionless inverse root time ðx ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðt� tÞ

p
Þ; }

t time integrating parameter, }
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