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Summary

Strain-dependent hydraulic conductivities are uniquely de®ned by an environmental factor,
representing applied normal and shear strains, combined with intrinsic material parameters
representing mass and component deformation moduli, initial conductivities, and mass
structure. The components representing mass moduli and structure are de®ned in terms of
RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a
whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock.
These two empirical parameters determine the hydraulic response of a fractured medium to
the induced-deformations. The constitutive relations are veri®ed against available published
data and applied to study one-dimensional, strain-dependent ¯uid ¯ow. Analytical results
indicate that both normal and shear strains exert a signi®cant in¯uence on the processes of
¯uid ¯ow and that the magnitude of this in¯uence is regulated by the values of RQD and
RMR.

1. Introduction

A knowledge of changes in hydraulic conductivity that result from the redistribu-
tion of stresses or strains around engineered structures is crucially important.
Changes in hydraulic conductivity, as a result of thermoporomechanical coupl-
ing in a radioactive waste repository, may impact the spread of aqueous and
colloidal contaminants (Pusch, 1989; Smelser et al., 1984; Skoczylas and Henry,
1995). Changes in hydraulic conductivity due to underground excavation may
a¨ect groundwater in¯ows into tunnels, create di½cult tunnelling conditions and
slow the advance rate (Zhang and Franklin, 1993; Wei et al., 1995; Jakubick and
Franz, 1993). Changes in hydraulic conductivity due to the redistribution of
stresses within coal seams a¨ect the di¨usion and ¯ow of methane, thus in¯uenc-



ing the rate of emission of coal-bed methane into both underground mine work-
ings and to the environment as a greenhouse gas (Smelser et al., 1984; Patton et al.,
1994; Valliappan and Zhang, 1996). Underground mining potentially induces
large strains in the overlying strata, that in turn may result in the development of a
strongly heterogeneous and anisotropic hydraulic conductivity ®eld. This strain-
dependent conductivity ®eld is of special importance in evaluating the potential
impact of underground mining on ground water resources (Neate and Whittaker,
1979; Booth, 1992; Walker, 1988; Roosendaal et al., 1990). The local ground water
system may be appreciably altered (Matetic et al., 1991; Matetic and Trevits,
1992; Matetic, 1993; Matetic et al., 1995). It is apparent that stress-dependent ¯ow
laws are of central importance to a wide range of engineering problems.

The hydraulic conductivity of a fracture is primarily determined by the aper-
ture of the fracture. The aperture is a¨ected by both the normal and shear defor-
mation. Laboratory studies (Jones, 1975; Nelson and Handin, 1977; Kranz, 1979;
Trimmer et al., 1980) have documented this observation, and theoretical models
(Bawden et al., 1980; Ayatollahi et al., 1983) are capable of replicating this
behavior. To a residual threshold, there is decrease in fracture conductivity with
increasing normal load. Shear displacements in¯uence conductivity, as condi-
tioned by fracture aperture and roughness (Brown, 1987), and there is evidence
that dilatancy plays a central role, especially under low ambient stresses (Teufel,
1987; Makurat, 1985; Makurat et al., 1990). At higher stresses, crushing of asper-
ities, and the production of gouge may reduce stresses. Thus, the ambient stress
®eld governs the ¯uid transmission behavior of fractures and can explain why
fractures may, at di¨erent times, be both a conductor and a barrier to ¯uid ¯ow
(Hooper, 1990). Results reporting stress-dependent conductivity for the complete
stress-strain curve (Li et al., 1994) and for true triaxial conditions (King et al.,
1995) have also been reported. These experimental results provide critical physical
insights into complex hydro-mechanical processes. Alvarez et al. (1995) concluded,
by re-evaluating published experiments, that relations between hydraulic aperture
and fracture closure are generally linear at low e¨ective normal stresses (<25 MPa)
and in some studies depart from a straight line as an irreducible ¯ow rate is
approached at higher stresses. Assuming the cubic law is valid for fracture ¯ow,
Ouyang and Elsworth (1993) de®ne the relationship between induced-normal
strain and hydraulic conductivity for two-dimensional cases. Based on this theo-
retical relationship, a three-dimensional relationship between induced-normal
strain and hydraulic conductivity has been developed by Liu (1996), and applied
in the study of longwall mining (Matetic et al., 1995; Liu, 1994; Liu and Elsworth,
1997; Liu et al., 1997). In these studies, the existing normal strain-permeability
relations (Liu, 1996) are modi®ed and extended to include the dilatancy e¨ects due
to shear strains. More importantly, the new strain-permeability constitutive rela-
tions are de®ned by two valuable empirical parameters, RQD (rock quality des-
ignation) (Sen, 1997) and RMR (rock mass rating) (Nicholson and Bieniawski,
1990), both of which are readily available in practice. Based on these stress-
permeability constitutive relations, a stress-dependent relation is developed in
the following for one-dimensional ¯ow, and veri®ed against available published
data.
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2. Approach

A general form of the governing equation for ¯uid ¯ow in fractured media is
de®ned as

q

qxj
Kij

qh

qxi

� �
� Ss

qh

qt
; �1�

where Kij are components of the hydraulic conductivity tensor, h is total hydraulic
head, xi �i � 1; 2; 3� is coordinates, Ss is speci®c storage, and t is time. The ¯ow
velocity, Vi, is de®ned as

Vi � ÿKij
qh

qxi
: �2�

In this study, the hydraulic conductivity, Kij, is de®ned as a function of changes
in strain.
The following assumptions are made for the derivation of the strain-conductivity
relations.

1. The rock mass can be represented as two-dimensional or three-dimensional
orthogonally fractured media. Under this assumption, fracture apertures may
be de®ned as a joint function of the initial hydraulic conductivity and fracture
spacings;

2. No new fractures are produced during deformation and fracture spacings cor-
respondingly remain unchanged. Under this assumption, the strain-dependent
hydraulic conductivity ®eld can be de®ned as a function of the initial conduc-
tivity and the induced-strain ®eld;

3. The rock matrix is functionally impermeable and the dominant ¯uid ¯ow is
within the fractures. Correspondingly, changes in conductivity can be de®ned
by the equivalent parallel plate model (Witherspoon et al., 1980);

4. Extensional strains increase the directional hydraulic conductivity, and com-
pressive strains decrease conductivity.

Reductions in compression are typically truncated by a residual threshold. Ac-
cordingly, these assumptions limit the range of applicability of these strain-
conductivity relations. For example, it may not be appropriate to apply these
relations for shearing under high normal stress-to-strength ratios where gouge
formation and fracture plugging, or fracture contraction, may be important pro-
cesses (Makurat and Gutierrez, 1996).

3. Strain-dependent Hydraulic Conductivity

The revised hydraulic conductivity ®elds can be determined if changes in fracture
aperture can be de®ned as a function of induced-strains. This is realized by parti-
tioning the induced-strains between fracture and solid matrix. These results are
reported in the following.
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3.1 Two-dimensional Case

Assuming deformations in normal closure or extension are the predominant
conductivity-enhancing mode, the directional hydraulic conductivities, Kx and Ky,
in the x- and y-directions, are de®ned by Ouyang and Elsworth (1993) as

Kx � g

12ms
�b� Dby�3

Ky � g

12ms
�b� Dbx�3;

8>>><>>>: �3�

where g is gravitational acceleration, m is kinematic viscosity, s is the fracture
spacing, and Dbx and Dby are, respectively, displacements in the x- and y-
directions, on fractures that are orthogonal to the displacement, as illustrated in
Fig. 1.

In the following, Eq. 3 is modi®ed to include the e¨ect of shear stresses on the
hydraulic conductivity. As illustrated in Fig. 1, changes in fracture aperture, Dbx

and Dby, may result from both normal deformation and shear deformation, as
de®ned as

Dbx � Dbxn � Dbxs

Dby � Dbyn � Dbys;

(
�4�

where Dbxn and Dbxs are the induced-displacements in the x-direction on the frac-
tures due to the induced-normal strain, Dex, and the induced-shear strain, Dgxy,
respectively; Dbyn and Dbys are the induced-displacements in the y-direction on
the fractures due to the induced-normal strain, Dey, and the induced-shear strain,
Dgxy, respectively. It is clear that Dbxs � Dbys since Dtxy � Dtyx. As illustrated in
Figs. 1(b) and (c), the displacements onto the vertical fracture and the horizontal
fracture due to the induced-normal strains in the x- and y-directions, Dbxn and
Dbyn, are de®ned as

Dbxn � 1

E
�Dsx ÿ nDsy��s� b� ÿ 1

Er
�Dsx ÿ nDsy�s � �Dsx ÿ nDsy� s� b

E
ÿ s

Er

� �
Dbyn � 1

E
�Dsy ÿ nDsx��s� b� ÿ 1

Er
�Dsy ÿ nDsx�s � �Dsy ÿ nDsx� s� b

E
ÿ s

Er

� �
;

8>>><>>>:
�5�

where Dsx, Dsy and Dtxy are normal and shear stress components, respectively;
Dex, Dey and Dgxy are induced normal and shear strain components, respectively;
E and n are elastic modulus and Poisson ratio of the rock mass, and Er is the
elastic modulus of the intact rock. Substituting E � ReEr into Eq. 5 gives

Dbxn � �b� s�1ÿ Re��Dex

Dbyn � �b� s�1ÿ Re��Dey;

(
�6�
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where Re is de®ned as the ratio of the elastic modulus of rock mass to that of the
rock matrix.

Through the same procedure as above, the displacements applied to the verti-
cal and horizontal fractures due to the induced-shear strains in the x- and y-
directions, Dbxs and Dbys, are de®ned as

Dbxs � 1

G
Dtxy�s� b� ÿ 1

Gr
Dtxys � �s� b��1ÿ Rg�Dgxy

Dbys � 1

G
Dtyx�s� b� ÿ 1

Gr
Dtyxs � �s� b��1ÿ Rg�Dgyx;

8>>><>>>: �7�

Fig. 1. A schematic representation of an isolated rock mass body. Identical fractures are present with
spacing, s, and aperture, b
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where Gr and G are the shear modulus for intact rock and rock mass, respectively.
Rg � G=Gr is de®ned as the shear modulus reduction ratio.

Assuming that the normal stress-to-strength ratios are low, shear strains
always increase hydraulic conductivity (Makurat and Gutierrez, 1996). Therefore,
the shear strains in Eq. 7 should be replaced by their absolute values. Constitutive
relations between induced-strains and fracture apertures are obtained by sub-
stituting Eqs. 5 through 7 into Eq. 4 as

Dbx � �b� s�1ÿ Re��Dex � �s� b��1ÿ Rg�jDgxyj
Dby � �b� s�1ÿ Re��Dey � �s� b��1ÿ Rg�jDgxyj:

(
�8�

Subsequently, strain-dependent hydraulic conductivities are obtained by sub-
stituting Eqs. 8 into 3 as

Kx � g

12ms
fb� �b� s�1ÿ Re��Dey � �s� b��1ÿ Rg�jDgxyjg3

Ky � g

12ms
fb� �b� s�1ÿ Re��Dex � �s� b��1ÿ Rg�jDgxyjg3:

8>>><>>>: �9�

Substituting K0 � gb3

12ms
into Eq. 9 yields

Kx

K0
� 1� 1� 2�1ÿ Re�

ff

" #
Dey � 1� 2

ff

 !
�1ÿ Rg�jDgxyj

( )3

Ky

K0
� 1� 1� 2�1ÿ Re�

ff

" #
Dex � 1� 2

ff

 !
�1ÿ Rg�jDgxyj

( )3

;

8>>>>><>>>>>:
�10�

where ff is the e¨ective porosity and is de®ned as

ff �
�b� s�2 ÿ s2

�b� s�2 G
2b

s
: �11�

For simplicity, Eq. 10 is symbolically written as

Kii

K0
� 1� 1� 2�1ÿ Re�

ff

" #
Dejj � 1� 2

ff

 !
�1ÿ Rg�jDgij j

( )3

; �12�

where Kii �i � x; y� represents directional conductivities, and Dejj � j � x; y� and
Dgij �i; j � x; y� represent induced-strains. As shown in Eq. 10, the strain depen-
dent hydraulic conductivities are uniquely de®ned by parameters, Re, Rg and ff

for the original rock mass, and by the induced-strains.

3.2 Three-dimensional Case

For three-dimensional orthogonally fractured media, changes in one-directional
hydraulic conductivity are a function of induced-strains in the other two orthogo-
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nal directions. Therefore, Eqs. 12 and 11 can be easily extended to the 3-D case as:

Kii

K0
� 1

2
1� 1� 3�1ÿ Re�

ff

" #
Dejj � 1� 3

ff

 !
�1ÿ Rg�jDgjkj

( )3

� 1

2
1� 1� 3�1ÿ Re�

ff

" #
Dekk � 1� 3

ff

 !
�1ÿ Rg�jDgkjj

( )3

; �13�

ff �
�b� s�3 ÿ s3

�b� s�3 G
3b

s
�14�

respectively. For practical purposes, the constitutive relations between strains and
directional hydraulic conductivities in fractured porous media, as de®ned by Eq.
12 for the 2-D case, and by Eq. 13 for the 3-D case, are simpli®ed as

Kii

K0
� 1� 2�1ÿ Re�

ff

Dejj � 2�1ÿ Rg�
ff

jDgij j
" #3

�15�

and

Kii

K0
� 1

2
1� 3�1ÿ Re�

ff

Dejj � 3�1ÿ Rg�
ff

jDgjkj
" #3

� 1

2
1� 3�1ÿ Re�

ff

Dekk � 3�1ÿ Rg�
ff

jDgkj j
" #3

�16�

respectively. Assuming Re � Rg � 1, Eq. 12 for the 2-D case, and Eq. 13 for
the 3-D case, can be simpli®ed to represent the constitutive relations connecting
induced-strains with hydraulic conductivities in porous media as

Kii

K0
� �1� Dejj�3 �17�

and

Kii

K0
� 1

2
�1� Dejj�3 � 1

2
�1� Dekk�3 �18�

respectively.

3.3 De®nitions of Re and Rg

As illustrated in Fig. 1(c), shear and dilation are related through the equivalent
and intact moduli, as

txy

G
�s� b� � txy

Gr
s� txy

Ks
tan fd ; �19�

where Ks is the fracture shear sti¨ness, and fd is the fracture dilatational angle.
Equation 19 may be rearranged to yield
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Rg �
1� b

s

1� Gr

sKs
tan fd

� 1� 0:5ff

1� Gr

sKs
tan fd

: �20�

As shown in Eq. 20, the resulting shear modulus reduction ratio is a function

of the e¨ective porosity, ff , and the mass compliance,
Gr

sKs
tan fd . Theoretically,

Rg varies between zero
Gr

sKs
tan fd !y

� �
and unity

Gr

sKs
tan fd ! 0:5ff

� �
. Sim-

ilarly, Re is de®ned as

Re � E

Er
� 1� 0:5ff

1� Er

sKn

; �21�

where Kn is the fracture normal sti¨ness. As shown in Eq. 21, the resulting
modulus reduction ratio is a function of the e¨ective porosity, ff , and the mass
compliance, Er=sKn. Theoretically, Re varies between zero �Er=sKn !y� and
unity �Er=sKn ! 0:5ff �.

3.4 Determination of Re and Rg

Re and Rg may be correlated with rock mass classi®cation schemes. Re and Rg

are actually a measure of scale e¨ect, de®ned as the variation of any functional
parameter, perhaps strength, modulus or permeability, with specimen size. For
application to ®eld problems, laboratory values of deformation moduli should be
reduced (Nicholson and Bieniawski, 1990; Mohammad et al., 1997). According to
a variety of results (Nicholson and Bieniawski 1990), Re and Rg may be de®ned as
a function of RMR

Re � Rg � 0:000028RMR2 � 0:009eRMR=22:82; �22�
where RMR is de®ned as rock mass rating (Bieniawski, 1978). This rock mass
classi®cation utilizes the following six parameters, all of which are measurable in
the ®eld and can also be obtained from borehole data:

1. uniaxial compressive strength of the intact rock material;
2. rock quality designation (RQD);
3. spacing of the discontinuities;
4. condition of the discontinuities;
5. groundwater conditions;
6. orientation of the discontinuities.

The classi®cation scheme quanti®es rock mass conditions according to a scale
varying from 0 to 100. Highly fractured (crushed) rock approaches an RMR value
of zero, while intact rock approaches 100.
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3.5 Determination of ff

Substituting b � 12msK0

g

� �1=3

into Eqs. 11 and 14 gives the e¨ective porosity for

the 2-D and and 3-D cases as

ff � 2
12mK0

gs2

� �1=3

�23�

and

ff � 3
6mK0

gs2

� �1=3

�24�

respectively. The equivalent fracture spacing, s, may be determined by an empiri-
cal rock classi®cation index, RQD (Rock Quality Designation), which is de®ned
as (Sen, 1997)

RQD � 100
Xn

i�1

Xi

L
; �25�

where n is the number of intact lengths greater than 10 cm, L is the length of a
drill hole or scanline, and Xi is the intact length. Based on the value of RQD, rock
masses are classi®ed as ®ve categories, namely: excellent (90 < RQD < 100); very
good (75 < RQD < 90); fair (50 < RQD < 75); poor (25 < RQD < 50); and very
poor (0 < RQD < 25). Assuming that fractures occur randomly in nature and that
the number of fractures along a borehole follow the Poisson process, so that the
intact lengths have a negative exponential distribution, Priest and Hudson (1976)
derived the following relation

RQD � 100�1� 0:1l�eÿ0:1l; �26�
where l is the average number of fractures per meter. Substituting s � 1=l into
Eq. 26 gives

RQD � 100 1� 1

10s

� �
eÿ�1=10s�; �27�

where s is the equivalent fracture spacing. The incorporation of RQD into the
determination of e¨ective porosity makes it possible to link the e¨ective porosity
to an empirical geotechnical parameter which is readily measured, in practice.
When RQD approaches zero, it suggests that the rock mass approaches the form
of a porous medium with a high e¨ective porosity. When RQD � 100, it suggests
that the rock mass is relatively impermeable.

4. Sensitivity Study

As shown in Eqs. 15 and 16, the strain-dependent hydraulic conductivity, Kii

�i � x; y; z�, is uniquely de®ned by the environmental factors (strains) and mate-
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rial properties (Re, Rg and ff ). The e¨ects of these intrinsic factors on changes
in hydraulic conductivity are demonstrated in Fig. 2. Assuming Deii � 0, ff �
0:5%, Eq. 15 is reproduced graphically in Fig. 2(a). The hydraulic conductivity
may increase by up to 2 orders of magnitude when Rg varies from 0 to 1. When
the shear modulus reduction ratio, Rg, is equal to 1, the rock mass and the rock
matrix material shear moduli are identical, and the shear strain is uniformly dis-
tributed between fracture and matrix. This results in the smallest possible change
in hydraulic conductivity. When Rg � 0, the shear strain is applied entirely to the
fracture system and precipitates the largest possible change in hydraulic conduc-
tivity. For the pure shearing case, changes in hydraulic conductivity are regulated
by the shear modulus reduction ratio, Rg. Assuming Dgij � 0, ff � 0:5%, Eq. 15

is graphically illustrated in Fig. 2(b). The hydraulic conductivity may increase by
up to 2 orders of magnitude when the normal strain is positive and Re varies from
0 to 1. The hydraulic conductivity may also decrease by up to 2 orders of magni-
tude when the normal strain is negative and Re varies from 0 to 1. When the elastic
modulus reduction ratio, Re, is equal to 1, the rock mass and the rock matrix

                                       

 

                                                                  

                          

                      

                         

Fig. 2. Relations between induced-shear strains, Dgxy, normal strains, Dex and Dey, and hydraulic
conductivity ratios, Kxx=K0 or Kyy=K0: a pure shearing; b pure compression and extension; c complex

stress state with constant normal strains; d complex stress state with constant shear strains
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material elastic moduli are identical, and the normal strain is uniformly distributed
between fracture and matrix. This results in the smallest possible change in hy-
draulic conductivity. When Re � 0, the normal strain is applied entirely to the
fracture system and precipitates the largest possible change in hydraulic conduc-
tivity. For the pure compressive or extensional cases, changes in hydraulic con-
ductivity are regulated by the elastic modulus reduction ratio, Re. As shown in
Figs. 2(c) and (d), both normal and shear strains may exert signi®cant in¯uence on
strain-induced changes in hydraulic conductivity. The magnitudes of hydraulic
conductivity ratios are regulated by Re, Rg and ff .

5. Veri®cation

The performance of the proposed strain-conductivity relations in this study has
been compared with both the Gangi (Gangi, 1978) and Barton-Bandis (Barton
et al., 1985) models. These results are reported in the following.

5.1 Comparison with the Gangi Model

Equation 17 is veri®ed against Gangi's model. Gangi de®ned the relation between
hydraulic conductivity and stress as

K

K0
� 1ÿ 1

2

Dsc � Dsi

E0

� �2=3
" #4

; �28�

where Dsi is the equivalent cementing pressure; E0 is the e¨ective modulus of the
grains, and Dsc is the con®ning stress. Assuming the strain can be expressed as

De � Ds

E
� Dsc � Dsi

E0
; �29�

then Eq. 28 may be reformulated as

K

K0
� 1ÿ 1

2
�De�2=3

� �4

; �30�

while the proposed relation is de®ned by Eq. 17. The relation proposed in this
work (Eq. 17) is compared with the Gangi model (Eq. 30) and is shown in Fig.
3(a), in response to the variation of hydraulic conductivity ratio, K=K0, versus
strain, De. The models exhibit favorable agreement, particularly when De � ÿ1:0,
the proposed equation yields a more reasonable value �K=K0 � 0�.

5.2 Comparison with the Barton-Bandis Model

In the Barton-Bandis model (Barton et al., 1985), a distinction between mechani-
cal and hydraulic apertures has been made. Based on the equivalent smooth wall
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(conducting) aperture, the following relation for a set of fractures holds

K � ge3

12ms
; �31�

                                                                                                             

Fig. 3. Analytical results: a Comparison with Gangi's model; b Relations between normal com-
pressive stress (MPa) and hydraulic conductivity ratios �K=K0� under di¨erent values of b. b �

2�1ÿ Re��1ÿ n�=ff E and b � 3�1ÿ Re��1ÿ 2n�=ff E for 2-D and 3-D cases, respectively
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where e is the hydraulic aperture. The empirical relation between mechanical and
hydraulic apertures was de®ned as (Barton et al., 1985)

e � b2

JRC2:5
; �32�

where JRC is the fracture roughness and b is the mechanical aperture. Applying
Eqs. 31 and 32 for the initial condition, i.e. e � e0, b � b0, and K � K0, yields

K0 � ge3
0

12ms
�33�

e0 � b2
0

JRC2:5
�34�

respectively. Solving Eqs. 31 through 34 yields

K � K0
b

b0

� �6

: �35�

As apparent from Eq. 35, the conductivity ratios are proportional to the aperture
ratio, b=b0, raised to the power of 6, instead of 3 for the relation proposed in this
study. This discrepancy results from the empirical relation between the hydraulic
and the mechanical apertures, as apparent in Eq. 32. It is concluded from this
comparison that the strain-conductivity relations proposed in this study may need
to be modi®ed for closures close to residual apertures, where the in¯uence of
fracture roughness is correspondingly more important.

6. Stress-dependent Cubic Flow Laws

For 1-D ¯ow cases, Eq. 2 may be simpli®ed as

V � ÿK�s� qh

qx
; �36�

where V is the ¯ow velocity, K�Ds� is the stress-dependent hydraulic conductivity,
h is the hydraulic head, and x is the spatial coordinate. Flux, Q, may be de®ned as

Q � VA � ÿK�Ds�A qh

qx
; �37�

where A is the cross sectional area.
Assuming Dgij � 0 �i; j � x; y; z� and Dejj � Dekk, Eqs. 15 and 16 may be

symbolically rewritten as

Kii

K0
� �1� bDsjj�3; �38�

where b is de®ned, for 2-D and 3-D cases, as
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b � 2�1ÿ Re��1ÿ n�
ff E

�39�

b � 3�1ÿ Re��1ÿ 2n�
ff E

; �40�

respectively. The relations between normal compressive stress and hydraulic con-
ductivity ratio are illustrated for di¨erent values of b in Fig. 3(b). It is apparent
that the normal compressive stress may have signi®cant impact on the hydraulic
conductivity and the impact is regulated by the value of b.

Substituting Eqs. 38 into 37 yields

Q � ÿAK0�1� bDs�3 qh

qx
�41�

where b is de®ned by Eqs. 39 or 40. Equation 41 may be de®ned as a stress-
dependent cubic law. The equation is rewritten as

Q

Q0
� �1� bDs�3; �42�

where Q0 is the ¯ux under the condition of a null stress change, Ds � 0. The most
obvious advantage in applying this cubic law is that no additional elusive material
parameters are introduced, and that all parameters are commonly available in
practice. This advantage makes it possible to verify the proposed model against
experimental data. Veri®cations against Skoczylas and Henry's experimental data
(1995) and Myer's data (1991) are shown in Fig. 4. The analytical results agree
well with the experimental data. It should be pointed out that the values of b, used
in these veri®cations, are assumed as insu½cient data are available.

7. Conclusions

The hydraulic response of a fractured medium to applied deformations has been
evaluated by the development of constitutive relations linking applied strains to
resulting changes in hydraulic conductivities. The obvious advantage of these
relations is that the parameters they require are available in practice. More
importantly, the incorporation of RQD and RMR enables the stress-dependent
hydraulic conductivity to represent a broad spectrum of rock masses varying from
highly fractured (crushed) rock to intact rock. These two empirical parameters
determine the hydraulic response of a fractured medium to induced-deformations.
Analytical results indicate that directional hydraulic conductivities in porous media
are relatively insensitive to changes in strain because of the close spacing of the
¯ow conduits, relative to the conduit apertures. However, both normal and shear
strains exercise signi®cant control on the directional hydraulic conductivity ratios
of fractured media. The magnitudes of these ratios are primarily modulated by
two rock mass classi®cation indexes, RMR and RQD. Depending on the magni-
tudes of these two empirical parameters, these ratios may increase or decrease by
several orders of magnitude. Extensional strains increase the directional conduc-
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Fig. 4. Comparison of the model predictions with Skoczylas and Henry's experimental data for porous
rock (a) and for fractured rock (b), and with Myer's experimental data of ¯ow in a natural fracture (c)
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tivity by incrementing the aperture, compressive strains decrease the conductivity
due to the reduction in aperture. Under low ambient stress levels, shear strains
always result in increased hydraulic conductivity due to the dilatancy of fractures.

These constitutive relations, linking applied strains and hydraulic conduc-
tivities, may be applied in a variety of engineering ®elds where mining, petroleum
or geothermal energy production, degasi®cation or in-situ mining, among other
processes, induce strains within geologic media. Despite this widespread applica-
bility, caution should be exercised in their application, ensuring that their limi-
tations are not violated. Principal limitations relate to the presumed validity of the
cubic law for ¯ow in a single fracture and the elastic response of both rock matrix
and the rock mass deformation.
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