MODELING CONTAMINANT MIGRATION WITH LINEAR SORPTION IN
STRONGLY HETEROGENEOUS MEDIA

By M. Bai,' D. Elsworth,” Member, ASCE, H. L. Inyang,’ Member, ASCE, and J.-C. Roegiers*

ABSTRACT: A triple-porosity model is presented to evaluate transport behavior in porous media with a structure
comprising a spectrum of pore sizes, represented discretely as macro-, meso-, and micropores. Characterizations
are completed to provide adequate semianalytical solutions for the validation of codes representing discrete
distributions of pore geometry and to adequately describe extended tailing and multicomponent solute front
breakthroughs apparent in field and laboratory data. Semianalytical solutions are derived for a one dimensional
flow geometry by using Laplace transforms under the assumption that solute transport in the two interactive
mobile-transport regions (i.e., macro- and mesopores) is affected by exchange with immobile solutes in the
micropore region. Sensitivity analyses are conducted to identify the propensity for extensive tailing in the
breakthrough response, over single-porosity approaches, and the development of multiple breakthrough fronts
with reverse diffusion. Both behaviors result from the strongly heterogeneous nature of the transport processes,
accommodated in the multiporosity model, and are well suited to the representation of *“‘real’’ porous and porous-

fractured disordered media.

INTRODUCTION

Porous media commonly exhibit heterogeneities at a variety
of scales, including cracks, fractures, interconnected macro-
pores, and aggregate micropores, all of which may result in
the development of dynamic instabilities of the wetting front
during fluid infiltration (Gerke and van Genuchten 1993).
These structures, at varying length scales, and the resulting
flow processes frequently affect solute migration at the mac-
roscopic level by creating nonuniform flow fields with sub-
stantial velocity contrasts. When these spatial variabilities are
prevalent, the effects of the heterogeneities must be character-
ized and incorporated into the modeling if an accurate descrip-
tion of behavior is sought.

To match the nonuniform pressure or concentration profiles
observed in the laboratory and field, the use of dual-porosity
models to characterize behavior has become popular. Such an
approach assumes that porous media consist of two regions
with distinct flow properties. Macropores, or fractures, form
preferential flow channels, whereas less permeable soil aggre-
gates or rock matrix blocks act as branched flow paths con-
nected to the main channels (Barenblatt et al. 1960). These
branch-flow paths assist either in reducing mass fluxes within
channels by direct diversion or in replenishing the channels
with additional stored mass, depending upon the pressure (or
concentration) gradients between the two regions (Bai et al.
1996). Through restricting mass transfer within the rock matrix
or micropores, simpler but more practical dual-porosity mod-
els were developed by Warren and Root (1963) for fluid flow
and by Coats and Smith (1964) for solute transport. The ‘“‘com-
partment model’’ by the former and the “‘capacitance model’’
by the latter are applicable only to the scenario where the
hydrological properties between the primary channels and
branch paths are significantly different. Errors, particularly at
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early times, are accentuated if the difference is substantially
reduced (Chen 1989).

With respect to mass transport, a further complication is
associated not only with the physical interplay between macro-
and micropores, but also with the interplay between dispersion
and convection, as characterized by Péclet number. Nonuni-
form solute transport in soils has been observed in many ex-
periments in the form of early breakthrough and extended tail-
ing (Anderson 1979). This behavior is typically ascribed to
physical reasons, including the prevalence of anisotropic hy-
draulic conductivities, heterogeneous soil structures, and non-
equilibrium sorption characteristics (Brusseau and Rao 1990).
Theoretically, this nonuniform behavior may become promi-
nent through increasing the ratio between flow velocity and
dispersion coefficient, as embodied within the Péclet number.
Considering the physics behind this explanation of behavior,
the nonuniform response in the concentration field is attributed
to the influence of velocity variations at the micropore level
(Passioura 1971; Li et al. 1994).

The use of a dual-porosity approach to represent transport
behavior (envisioning two regions, e.g., mobile and immobile
regions) may be insufficient to characterize highly heteroge-
neous porous media containing pore structures at a variety of
length scales. In this, mesopores of intermediate scale may
exist as a buffer zone to modify mass transfer between mac-
ropores and micropores. Characteristic response of a triple-
porosity medium yields a spectrum of breakthrough curves,
typically with enhanced tailing (Abdassah and Ershaghi 1986;
Bai et al. 1993). As pointed out by Gwo et al. (1996), it is
appropriate to view soils as consisting of a continuous distribu-
tion of pore sizes that may be segregated into macro-, meso-,
and micropore regions, analogous to particle-size distribution
being segregated into sand, silt, and clays. Luxmoore et al.
(1990) defined macropores and micropores as pores with
“equivalent pore diameters’’ (EPD) greater than 1 mm and
less than 0.01 mm, respectively. Gwo et al. (1995) alterna-
tively divided the pore structures into three regions by adding
a mesopore region with a corresponding EPD between 0.01
mm and 1 mm.

Examination of the triple-porosity behavior of porous media
may not only provide a rationale to replicate the complex
physical phenomena related to transport in heterogeneously
structured soils, but also suggest an alternative tool in match-
ing unusual response in physical experiments. As illustrated in
Fig. 1, a structured soil may be divided into three distinct
porous domains (macro-, meso-, and micropores) that may be
alternately envisioned as consisting of fractures, microfrac-
tures, and matrix pores with three different velocity and dis-
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FIG. 1. Schematic Triple-Porosity Scenario

persion profiles. While macropores act as preferential channels
for mass transport, mesopore regions are considered as branch
paths to divert solute either out from or into the least perme-
able micropore aggregates. Compared with traditional dual-
porosity conceptualization (Bai and Elsworth 1995) this cas-
cading or ‘‘tree’’ structured triple-porosity model leads to a
refined classification of transport domains in terms of their
temporal and spatial scales. In contrast to other triple-porosity
models [e.g., Bai and Roegiers (1996, in press)], the present
model preserves the mechanism of complete hydrodynamic
dispersion in mesopores, while adding linear sorption to all
porous spaces in an effort to encompass the critical fluid-solid
retardation process in the analysis. This increases the versatil-
ity of modeling and the fidelity with which real behavior may
be matched. Correspondingly, an improved triple-porosity
model is proposed and presented in the following section, to-
gether with semianalytical solutions for one dimensional (1D)
solute transport.

MATHEMATICAL FORMULATION

Assuming constant porosity, defining an average velocity
for each porous space v (v= v*/n, v* is the intrinsic interstitial
velocity), requiring that the quasisteady mass exchange rate is
proportional to the concentration gradients among the three
continua (Bear 1972; Bai et al. 1993; Gwo et al. 1995), and
considering linear sorption for the low liquid-concentration
range (Ogata 1964), the general governing equations for solute
transport in a triple-porosity system can be described as

a_x,- X ox; —5; -
gmmz a0,
+ 2 (e = ) +
n, O T Cm) %))
ag,,
Ti om(Cn = EmT ) )

where subscripts 1, 2, and 3 = macro-, meso-, and micropores,
respectively; subscripts m, m;, and m, follow rotational order
Ge,m=1,2 3, m =2,3, 1, and m, = 3, 1, 2); subscripts i
and j = coordinate indices; ¢ = solute concentration; ¢ = time
after inception of transport; x; = coordinate; D;; = hydrody-
namic dispersion tensor; v, = average flow velocity; n = po-
rosity; £ = a concentration exchange coefficient characterizing
mass transfer between pores at various scales; o = function of
sorption isotherm that is represented by the product of solid-

phase density and sorbed mass per unit mass of solids over
the porosity; K, = sorption intensity factor; and € = process
factor signaling whether the process is irreversible (€ = 0) or
can be reversible (e.g., €0 > ).

From governing equations (1) and (2), it is seen that con-
taminant migration can be attenuated not only by the transient
mass storage variations, including mass exchange among pore
spaces of various scales, but also by irreversible adsorption,
or reversible desorption (sorption as a whole). As a surrogate
for chemical reactions, the sorption mechanism is defined as
the removal or addition of contaminant by the solid matrix
through which the fluid flows. For example, sorption reactions
remove contaminants from ground water and add them to the
surfaces of minerals or the solid organic carbon of the unit
through which the contaminants are moving (Water Science
and Technology Board 1990). When sorption occurs, the rate
of contaminant migration is lower than the case for an unre-
tarded or neutral tracer. This behavior helps to reduce the
spread of contaminants but also provides a dormant source that
may be reactivated later as aqueous concentration declines and
the sorption process reverses.

Eq. (1) can be simplified by using the assumptions that (1)
Direct solute exchange between macropores and micropores is
insignificant; (2) solute within micropores is immobile (Coats
and Smith 1964); (3) the dispersion coefficient D is constant;
and (4) solute transport is 1D. As a result, Eq. (1) in an ex-
panded form becomes

Dl%—vl%=%+%(cl—cz)+% 3)
2%—w%=%+i—’2‘(cz—co+i—’:(cz—cg)+% @
0=%%3-+%(03—62)+aa;:3; Kl —to)  5,6)

%: p2{Cy — £2032); %: p3(C3 — €303) (7, 8)

For more general solution, the following dimensionless terms
are introduced:

P . Z N Y T O O
y"L’ T—L’ yi_D;’ bi_v,’ aij— y M= ) P (9)
where subscripts i =1, 2, 3;j=1,2,3buti#j;i=1and 2
for v, and b, only; and L = an arbitrary length that may rep-
resent sample or domain length. Because b, is always equal
to 1, it is omitted in the following formation.

Incorporating all dimensionless terms, (3)—(8) are rewritten

18 9 a ]
— G- Fraa - r2 10
v, 9y dy Ot ot
1 8%, éc dc do
; 322 - a_yz =b, [8—‘: + aulc; — ¢1) + anle, — ¢) + _6_1'2]
an
dc. da do
0=—=+an(cs — ) + — —=mlc — &) (12,13)
aT oT
ao do
—5-} = (e — €02 a—: =mic — €303)  (14,15)

For step injection at the inlet and constant flux (zero flux
for this case) at the outlet, boundary and initial conditions may
be described by

0 1 6(,‘2

a=c=c" (y=0); o =0 (y=1) (16a,b)
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where ¢® = concentration at the source; ¢}, ¢3, and ¢J = initial
concentrations; and o3, 69, and ¢3 = initial sorbent concentra-
tions in macro-, meso-, and micropores, respectively. The field
equations and boundary conditions, represented in (10)-(16),
are applicable to solute injection within a finite column of
triple-porosity medium.

Applying a Laplace transform to (10)—(15) yields

%%C;‘ - ‘%: 56 — ¢ + ap(@ — &) + 56, — ot (17)
%% - ‘;—iz = b,[(s¢; — &3) + ay(E;, — &)

+ an(é — &) + s6; — 03] 318)

0=256 — &3 + an(é — &) + s6; — o 19)

56, — O = 0i(E) — £,5)) (20)

56, — 03 =M&; — €,52); 563 — O3 =Ms(s — €3G3)  (21,22)

where s is the Laplace transform parameter.
Boundary conditions in the Laplace domain are transformed

as

dé, d¢

=0 =1

23a,
dy ~ dy (23a,b)

0
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s
The relationship between &; and & (i = 1, 2, 3) can be de-
rived from (20)—(22). The subsequent results can be substi-
tuted into (17)—(19) to eliminate unknowns &; (i = 1, 2, 3).
As a result, (17)—(22) reduce to

The relationship between ¢, and ¢, can be derived from (26)

as
0 = 0
i C3 + a3ty — M3
€= s + as; + 'f":;k (33)
Substituting (33) into (25) results in
1 d%, dc
; Ezz - d_; — $uly = —byayé, + b2 G4
where
axa
bu = b, (s + ay t+ axn — ﬁ) + TI; 335
o, Gn(c3 — m3) 0
= - + =
b2 b, [Cz s+ ag +qF +n: (36)
Eq. (24) can be rewritten as
1 d%, d¢
—‘YTZ;’?I - d_yl — ¢l = —ané + b1z (€1)]
where
bu=s+ap+nf obu=-—c +n) (38)

For brevity and completeness, the detailed analytical pro-
cedure and entire solutions of the coupled equations (37) and
(34) are given in the Appendix. Once ¢, is obtained, ¢, and &;
can be derived from (42) in the Appendix and (33), respec-
tively. Solute concentrations in the untransformed (natural) do-
main may be recovered through numerical inversion (Stehfest
1970). The solutions are most conveniently expressed in nor-
malized form as ¢,/c® where i = 1, 2, 3.

1 d, de, , , SENSITIVITY ANALYSIS
- Ar— . — N —— = — & * =
vidy: dy aT A tan - &)+ i i (24) In addition to better replicate the behavior of structured po-
| d% e rous media having multiple characteristic scales, one of the
a6 ac _ x 0 = _ = = _ = aims of developing a triple-porosity model is to provide a
Y. dy*  dy ballses = ca) + au(@ = &) + (@ = &)] more flexible tool in predicting and matching actual measure-
ments. In comparison with the traditional dual-porosity ap-
+nfe +m (25) proach, this versatile tool can be examined through simple
s _ 0 - = *x o sensitivity analyses. As defined in the dimensionless groups of
0= = ¢ + au(® — &) + mie +ms (26) (9), principal parameters for the designated location y andl:ime
where 7 are as follows: (1) Equivalent Péclet number (EPN) v, (i =
1, 2) for macro- and mesopores; (2) solute exchange intensity
w_ 5T «_ _Shm, % _ ST 27)-29) factor a; (ij = 12, 21, 23, 32); (3) flow velocity ratio b, (i =
ey me” P s+ mes P s+ e, 1, 2); and (4) equivalent sorption intensity factor 7, (i = 1, 2,
3). The dimensionless initial solute concentrations ¢}* = ¢{/c°
=0 ( s ) n= b;a‘;’( s 1) (30, 31) and the process factors € (i = 1, 2, 3) are predetermined for
s+ g § + M€, all porous phases as ¢ = 0.1, c¥ = 0.3, c¥=05,¢,=0.1, ¢,
= 0.2, and €; = 0.3. All parameters are listed in Table 1 with
=03 ( f - 1) 32) corresponding figures. The dimensionless solid-phase concen-
s + MsEs trations listed in Table 1 are defined as o* = a¥/c® In the
TABLE 1. Selected Dimensionless Parameters
Figure Y1 Yz s - 8z 832 b, it N2 N3 oy oz o3
(1) (2 @ [ @ (5) (6) (7) ()] 9 (10) (1) (12) | (13) (14)
2 0.1-100 10 0.5 04 0.3 0.2 2 0.001 0.01 0.1 0.1 0.01 0.001
3 1-20 10 0 04 0.3 0.2 2 0 0.01 0.1 0 0.01 0.001
4a 20 10 0.1 0.05 0.01 0.005 2 0.001 0.01 0.1 0.1 0.01 0.001
4b 20 10 05 04 0.3 0.2 2 0.001 0.01 0.1 0.1 0.01 0.001
4c 20 10 1 0.8 0.6 0.4 2 0.001 0.01 0.1 0.1 0.01 0.001
5 20 10 0.5 04 0.3 0.2 2-50 0.001 0.01 0.1 0.1 0.01 0.001
6 20 10 0.5 04 0.3 0.2 2 0.001-0.5 0.01-0.6 0.1-0.7 0.1 0.01 0.001
Ta 20 10 0 04 0.3 0.2 2 0 0.01 0.1 0 0.01 0.001
7b 20 10 0.5 04 0 0 2 0.001 0 0.1 0.1 0 0.001
Tc 20 10 0.5 04 0.3 0.2 2 0.001 0.01 0.1 0.1 0.01 0.001
8 20 10 0.5 04 5 4 2 0.001 0.01 0.1 0.1 0.01 0.001
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illustrated figures, the concentration relative to the maximum
value at the injection point is referred to the quantity for mac-
ropores. The analysis is constrained to the study of temporal
concentration changes (breakthrough) at a specified location
(y = 0.5).

Determination of sensible parametric ranges for Table 1 may
be through (1) Previous experimental data; (2) related litera-
tare search; and (3) physical intuition and judgment. Even
though the grouped dimensionless parameters are used, reason-
able magnitudes of original parameters still need to be consid-
ered and accommodated because the variation of one param-
eter may affect other parameters due to the chain relationships
shown in (9). From the literature, certain general rules may be
derived in view of the parametric ranges.

Among all parameters, EPN -y, may be the most important
to be defined because it relates to the reverse relationship be-
tween the flow velocity and the hydrodynamic dispersion. For
the case of the “capacitance’’ concept, vy, for the macropores
is typically in the range 50-780 for the experimental setup by
Coats and Smith (1964). However, the range may drop to 10—
18 from the test data of Bouhroum and Bai (1996). The break-
through profiles subjected to the limiting cases of -y in a single-
porosity scenario can be obtained from Passioura (1971). In
view of the relative magnitudes of velocity v; and dispersion
D, (i = 1, 2, 3) for each porous phase, the general rules of v,
> 1w > y; and D, < D, < D; for the triple-porosity model can
be found in Gwo et al. (1995). Applying the definition that vy,
= yL/D,, it appears that vy, > -y, when L is a constant for the
present case. However, these rules are not universal and ex-
ceptions should be permitted [e.g., D, > D, > Ds; also see
Gwo et al. (1995)]. Due to the greater flow cross-sectional area
for the larger pore phase, v, > v, (i.e., b, > b,) for dual-porosity
situations may be commonly defined (Gerke and van Genuch-
ten 1993).

With regard to the solute exchange factor a;;, a broad range
is defined as 0.017-1.54 by Coats and Smith (1964), whereas
this range is narrowed down to 0.34-0.59 by Bouhroum and
Bai (1996). For the dimensional parameter £, which is a con-
centration exchange coefficient, it is known that &€, > &,; (Gwo
et al. 1995). Using physical intuition and considering the prin-
ciple of mass balance, the following equality results: &;, = &,
and &,; = £;,. Based on the literature (Warren and Root 1963;
Bai et al. 1993), larger conductivity media in general occupy
a smaller volume (i.c., have smaller overall porosity) and one
has n; > n; > n,. As aresult, and recalling that a; = £,L/(n,v),
the following relationship becomes a natural consequence
when L and vy, are held constant: a,, > ay > ay; > aj,. Again,
exceptions do exist.

Fewer references may be made to the parameters in sorption
for multiporosity media. However, Mannhardt and Nasr-El-
Din (1994) and Ogata (1964) indicated that sorption mecha-
nisms act as a supplemental form of the capacitance effect in
mobile and immobile zones proposed by Coates and Smith
(1964). The parametric ranges for sorption are chosen based
on both literature and physical intuition.

It should be emphasized that the following sensitivity study
involves the change of one parameter at one time while other
parameters are held constant with the consideration of the
chain effect discussed earlier.

Fig. 2 depicts the effects of increasing the EPN of macro-
pores (1) on the temporal variations of concentration. As v,
increases, the only possible accompanying phenomenon is the
decreasing of D,, since other parameters are held constant.
According to the traditional concept in a single-porosity me-
dium, decreasing dispersion would lead to less tailing and late
breakthrough. This seems to be the only case in Fig. 2 when
v: changes from 1 to 10. The remaining cases contradict the
normal observation. In other words, a decrease of vy, results in

an increase in tailing. This unusual phenomenon is the result
of the capacitance effect, as expounded by Mannhardt and
Nasr-El-Din (1994). Indeed, an enhanced solute exchange be-
tween macropores and mesopores would restrict the local sol-
ute concentration (at a point) in reaching its maximum value,
and as such lead to extended tailing. This response is aggra-
vated when the ratio of v, to -y, becomes quite large [e.g., ratio
(u1Dy/(v,D1)) = 10] where the contribution of solute exchange
becomes substantial. Interestingly, a variable concentration
slope change is noted for this case at the initial breakthrough.
This behavior may reflect the local replenishment of mass
from the mesopores to the macropores when the storage of the
macropores becomes exhausted. This type of slope change,
demonstrated as a fluctuation on the profiles of the break-
through curves, was observed experimentally by Neretnieks
(1993). This unusual dispersive response is difficult to deci-
pher in the transport modeling because the process may be
overshadowed by the simultaneous convective process.

To further ensure that the behavior of the single-porosity
model is different from that of the triple-porosity model sub-
jected to different EPN v, Fig. 3 depicts the breakthrough
curves for the single-porosity model (refer to Table 1) with
different . As expected in traditional transport modeling, a

1.0 7

£ 0.8 -]

OO.B 3

) 4

= 3

£ 7

- ]

0 06 7

Q p

g ]

o 3

(3} .

© 0.4 ]

> 4

2 ]

- ]

= ] / gamma,;=0,1
3 /s e gamma;=1

0.2 ] ¢ -~~~ gamma,;=10
E - — — gamma,=100
1 gamma,=10)

A
0.0 Tt T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Dimensionless time

FIG. 2. Breakthrough Curves for Various EPNs of Macropores
(v+)

1.0

o
-]
Liaassiian
\

IRITREAN B EEN

e
=

aaleiseaegy

Relative concentration
(=]
-

/ gamma,=1
L gamma,=20

(=]
N
Lisaiapaaloaiaeyg

0.0 FrErrrrrrrr e

00 02 04 06 08 10 1.2 14
Dimensionless time

FIG. 3. Breakthrough Curves for Two EPNs of Macro-

pores (v,)

JOURNAL OF ENVIRONMENTAL ENGINEERING / NOVEMBER 1997 / 1119



smaller vy corresponds to earlier breakthrough and tailing,
whereas the opposite is true for the larger v.

Based on (10)—(12), the triple-porosity behavior is charac-
terized by the magnitudes of the solute exchange intensity factor
a;. For a fixed rate of solute exchange between the meso- and
micropores, Fig. 4 describes temporal changes in concentration
for varying exchange coefficients between the macro- and
mesopores. Greater solute exchange between the larger pore
regions appears to result in more rapid breakthrough with ex-
tended tailing, a typical feature for the multiporosity media.
In contrast, less prominent solute exchange in the larger pore
domains, which resembles the single-porosity response, shows
a more regular Gaussian-type of breakthrough profile.

The velocity ratio b; between the micropores and mesopores
provides a reasonable benchmark to evaluate the impact of
flow velocity alone. Fig. S depicts significant differences in
temporal concentration, when the velocity contrast between
macro- and mesopores increases. The smaller velocity ratio (b,
= 2) signifies less-dominant transport within the macropores,
but a more significant influence from the mass exchange be-
tween macropores and mesopores, leading to an early break-
through and extended tailing. With the increase of the velocity
ratios (equivalent to the decrease of v, since v, is fixed), the
dominance of macropore transport becomes increasingly ap-
parent, which results in the progressively delayed but convec-
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tion-controlled breakthrough curves, an indication of the in-
creasing velocity contrast between the main flow region and the
less permeable regions. Similar phenomena have been observed
experimentally by McKibbin (1985), Houseworth (1988), and
Bouhroum and Bai (1996). The velocity contrast is attributed
to the permeability contrast among the different pore phases.
The convective component becomes dominant as the perme-
ability contrast increases.

The previous calculation does not consider the strong effects
from the sorption process because the relatively small equiv-
alent sorption intensity factors (ESIF) are used. With the in-
creased magnitudes of ESIF in macropores, Fig. 6 reveals the
significant differences in temporal concentrations, especially
during the late evolution of the breakthrough curves. Different
from the impact of interporosity mass exchange (as shown in
Fig. 4), this retardation process, because of the enlargement of
the macropore adsorption, results in the progressive tailing
without the exhibition of apparent early abrupt breakthrough.
Even though the solute exchange between the various porous
spaces also creates retardation in the concentration changes,
the differences between these two processes are that the retar-
dation by fluid-solid sorption occurs primarily in the individual
porous space (e.g., macropores), while the retardation by in-
terporosity mass exchange occurs in the multiple porous
spaces simultaneously. Consequently, the former process re-
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sults in direct concentration modification, such as a reduction
in concentration (Fig. 6), as opposed to indirect time-depen-
dent changes in concentration such as abrupt breakthroughs
evident in the latter process (Fig. 4). The retardation effect by
sorption was verified by Ogata (1964).

By manipulating the pertinent parameters in (10)—(12), a
comparison of temporal concentrations can be made between
single-porosity (a;; = 0), dual-porosity (a,; = a;, = 0), and
triple-porosity models as shown in Fig. 7. Early breakthrough
(slight in this case) and extended tailing are documented ef-
fects that index the level of transport heterogeneity and result
from the interaction between preferential flow channels and
less permeable regions. This behavior can be identified in both
dual-porosity and triple-porosity models. Under the present set
of parameters (Table 1), the differences between different
models shown in Fig. 7 may be considered insignificant. How-
ever, incorporating more significant solute exchange rate be-
tween mesopores and micropores, the difference becomes
more noticeable, as shown in Fig. 8.

CONCLUSIONS

Modeling solute migration in porous media with complex
structure has primarily focused on simplified representation as
two-region (dual-porosity) transport where the mass advected
in the main channels is modified by diffusive exchange with
components sequestered and effectively immobilized within
the porous matrix. For porous media with a refined structure,
where both mobile and immobile regions (e.g., macro- and
micropores) are affected by dispersion and convection in a
buffer zone (e.g., mesopores), a more comprehensive three-
region (triple-porosity) approach offers an advantage. The
most valuable extension is in consistently and appropriately
representing a continuous distribution of pore sizes as three
discrete intervals. The extension to a finer subdivision of pore
sizes is transparent. The extension to modeling the response
of three component media is straightforward, but adequate rep-
resentation of the convective term, with the attendant problems
of numerical dispersion, oscillation about the front and under-
and overshoot, remains present for all convection dominated
processes. In addition, interporosity mass exchange is the pri-
mary process for solute retardation (or attenuation) in the tra-
ditional dual-porosity and triple-porosity models. The sorption
process, occurring between fluid phase and inclusive solid par-
ticles, may constitute another crucial retardation phenomenon
and is sometimes neglected in these models.

To remedy this current situation, semianalytical solutions
are presented in this analysis to evaluate solute transport with
linear sorption in triple-porosity media. These solutions pro-
vide more physical insights in the complex hydrogeological
system while offering a more flexible tool in matching ex-
perimental results when the porous medium exhibits a char-
acteristic transport response of highly heterogeneous media,
including extended tailing and nonuniform breakthrough.
Apart from the standard numerical inversion using Laplace
transforms, the solutions appear complete and procedures are
straightforward. Sensitivity analysis identifies the EPN v, flow
velocity ratio b,, and the equivalent sorption intensity factor
7, as the most significant parameters. In view of <y, a sub-
stantial decrease of macropore dispersion would result in the
aggravated tailing or variable slope changes in the break-
through curve. With regard to b,, an increased velocity contrast
between larger pores and other smaller pores may lead to a
convection-dominated transport with progressively delayed
breakthrough. Envisioning m,, the enhanced adsorption within
macropores may result in a monotonic concentration reduc-
tion, occurring in a less time-dependent manner. Another in-
fluential parameter includes the solute exchange intensity fac-
tor a;, which may introduce increased disparity between
single-, dual-, and triple-porosity models. The triple-porosity
model presented in this work may be used to interpret the
nonstandard transport response of certain highly heterogene-
ous porous media and provides a basis to validate numerical
models that represent similarly complex physical systems.
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APPENDIX 1. DERIVATION OF &, AND &,
Solution Procedure

The method of differential operators (Mathematical Hand-
book 1979) is defined as

i _ d’if x)
Df(x) = ra 39
where i indexes an arbitrary variable; and 7 = order of the
differential equations.

The coupled equations (37) and (34) can be solved using

(39) as

DZ
('Y_ -D- ¢u) ¢+ and =odn 40)
1
D?
(-_y— - D - ¢21> & + ayé, = by 41
2
Solving (40) and (41) simultaneously, yields
1 D?
6= [4’22 - (" - D- ¢21) 52] 42)
az Y2
(D* + 8,D° + 8,D* + 0,D + 8,)¢, = 65 43)
where
0i=—(vi +v2); 6= =My + V202 — viv2) (ab)
0: = viv2(d + )i 84 = ViVaAduda — appan) (44cd)

8s = —viv2(andiz + bndan) (44e)
The solution ¢, from (43) can be expressed as

G=c4+ & 45)
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where ¢4 and & = homogeneous and nonhomogeneous solu-
tions, respectively; where ¢3 can be derived as ¢35 = 6;'8; or

G=Ch+ 0,05 (46)

For homogeneous solutions &5, the four roots from (43) can
be derived in the following manner. Rewriting (43) as

D+&D+ ¢, =0, D'+ &D+¢,=0 é4n

where

B=30+VE), &=30,-VE) @)

b=z + ___911/—3793’ b=z — —-—e'i/_A—les (48b)
A, =8z + 8] — 496, (48¢)

and where z = any real root of the following equation:
82> + 4E iz + Exz + E; =0 49)

and where
E = —0, E,=208,— 80, E,=0,46,— 65— 6 (50)

Further, assume z = ¥ — (E,/6), where the parameter u can
be determined from the third-order equation ®> + pu + g =0
and where

1 2E} 1 (2E; E\E,
- - = == -2 4
P s<52 ) q 8<27 S+ E) 6D

The three roots of ¥ may be described as
wm=F +F,, u=pF, + pF u,=pF,+pF, (52)

where
173

13
A*) , F2=<—§—VA*> (53a)
1. V3 1 V3

= —— A — = ——— =
P > 5 boP > > (53b)

2 3
A = (g) + (g) (53c)

Three possible solutions of the real root z exist depending
upon the signs of A* in (53), as indicated by the magnitude
of A*,

When A* > 0, the real root is

E
z=F1+Fz‘g' (54)

If A* = 0, then the real root becomes

z=—\’/4_—% (55)

However, if A* < 0, the real root is recovered in trigono-
metric form as

6

3
r= _(E> , o* = arccos (—i> ¢N
3 2r

Once the real root z is determined for (49), the four roots
of (43) can then be expressed as

z= 2\3/; cos (%;) ) (56)

where

B W= -2 — VA, (58a)

.
=5+ >

b=-2eVE W=-2-VE e

2 2

A2=%—¢,, A3=%—¢2 (58¢c)

The solutions in the Laplace domain may become compli-
cated as a result of uncertainty in the signs of A, A;, and A;,
which will be presented later.

Solving System of Equations

Following the previous analytical procedure, a system of
equations can be established after satisfying boundary condi-
tions as expounded in (23)

dy dy dis di &1 cf
dy dy dy dy 82 ct

= 59
dy dy dy dy & 0 59
dy di dy du 84 0

where

0

- ¢ c° _
cr = ¢22 + ¢2,94 195 — a4y "s—, C;‘ = ? - 94 195 (60)
Solutions of (59) can be expressed as
L.
&=7 (i=12734) (7))

where
4
J= (~1dyl, (62)
fm]
and where J; can be described as

Ji= dzj(d3kd4l —dudy) — de(dSJdH - dqu:) + dzz(dydu - d4jd3k)
(63)

and it follows the rotation rule, i.e., i # j # k # I. More spe-
cifically

i=1 j=2, k=3, [=4
i=2 j=3, k=4, I=1
i=3, j=4, k=1, 1=2
i=4, j=1, k=2, I=3 (64)
Similarly
L = (—1)[(cFdy — ctdy)(duds — dudy)
= (cFd — cfdu)dyds — dydsy)
+ (cFdy — ctdu)dydsy — dudy))] (65)
where the retrogressive rotation rule is applied, i.e.
i=1, j=2, k=3, I=4
i=2, j=1 k=3, [=4
i=3, j=1, k=2, I=4
i=4, j=1, k=2, I=3 (66)

The solution procedure includes the derivation of ¢, and ¢,
along with the components of the system matrix in (59), dy
B=1,2,34andi=1, 2,3, 4). The coefficients g, (i = 1,
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2, 3, 4) in the solutions can then be readily calculated from
61).
Analytical Solutions when A, = 0

For A, = 0, the solutions in the Laplace domain can be
divided into four groups depending on the signs of A, and
A;.

Case 1: A, = 0and A; =0

The solution from (43) and (46) can be written as

4
G = E g'_ew.-y + 9;195 67)
im]
1 4
¢ = a_. [¢22 + ¢2194_165 - 2 g,ﬂ,l,e"'":l (68)
21 i=1
where
2
u = M =Y — by (69)
Y2

After satisfying boundary conditions in (23), dg, are derived
as

dy=Qy, dy=1, dy=Qs di=8Q (=1,2,3,4) (70)
where

Q= q’iew', Qs =8y a1

Case 2: AZZOandA3<0
2

G >, g + elg; cos(wy) + g sin(@a)] + 0;'0,  (72)

i=]

where

%=—% RV (73)

2
1 _ "
¢ <¢22 + o,,0;'0, — 2 Q6"

1=
a =1
+ €™7{gs[\; cos(w.y) — A, sin(w,y)]
+ ga[A; sin(way) + Ay COS(way)]}>
(74)
where
1 2w
Ay=— (wg e ‘”3) —w;— by, M=, <—3 - 1) (75)
Y2 Y2
For i = 1, 2, dj, are identical to those in the case 1. However,
fori=3,4
dy = N, dy=1 (i= 3), dy=0 i=49 (760)
dy; = e™[AF cos(ws) — A¥ sin(wy)],
diq = e[A¥F sin(wg) + Af cos(w,)] (76b)
di = €”[0; cos(wy) — w, sin(w,)],
day = e[ sin(w,) + w, cos(w,)] (76¢)
where

AF = w3h; — WAy, AF = W3N; + W, an

Case 3: A, <Oand A, =0

4
€, = €"7[g; cos(myy) + g, sin(w,y)] + 2 g + 8,05 (78)

i=3

where

w = —%, w; =V —Az (79)

1 _ R
& = - (b2 + 5,005 — €"7{g,[\; cos(w,y) — A, sin(w,y)]
21

4
+ &[A; sin(w,y) + A; cos(w;))1}) + Z giflue””
=3 (80)

where
A =%(mf —w) — @~ by, M=o, (% - 1) (81)
For i = 3, 4, d, are identical to those in the case 1. However,
fori=1,2
dy=\, dy=1 (i=1), dy=0 (i=2) (82a)
ds; = e'[AF cos(w,) — A sin(w,)],
ds; = €'[\} sin(w,) + A cos(w,)] (82b)
dy = e'[m, cos(w,) — w, sin(wy)],
dy = e'[w, sin(w,) + w,; cos(w,)] (82¢)
where

AF = oA, — WAy, AF = o\, + o)\ (83)

Case4: A, <0and A; < 0
& = €"7[g:1 cos(w,y) + g, sin(w,y)]

+ e“”[g; cos(wsy) + g4 sin(w,y)] + 65'05 (84)
1 _ " .
G = = (b2 + &20:'05 — " {gi[\ cos(w,y) — A, sin(w,y)]
21

+ gao[\ sin(w,y) + N, cos(w,y)]}

+ e™{g3[Ns cos(wsy) — A4 sin(w,y)]

+ g«[s sin(w,y) + Ay cos(wey)]}) (85)
dg; can be expressed as
dy=N, ((=1,2,3,4), dy=1, (i=1,3)

dy=0, (=24 (86a)
dy; = e”'[A} cos(wy) — AS sin(w,)],

ds, = e”'[Af sin(w;) + A¥F cos(m,)] (86b)
ds3 = e”[A) cos(wy) — A¥ sin(w,)],

dys = €[N sin(@y) + A cos(w,)] (860)
dy = e[, cos(w,) — w, sin(w,)],

dy, = €”'[w,; sin(w,) + w, cos(w,)] (86d)
dyy = €”[w; cos(ws) — w, sin(wy)],

dus = [0 sin(w,) + w, cos(wy)] (86e)

All the parameters have been defined in the previous cases.
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Analytical Solutions when A, <0

If A, <O, then &, &, ¢,, and ¢, in (48) become complex
variables. It is not necessary, as in the previous cases, to de-
termine the signs for A, and A;, which are redefined as

Az = Ql + iﬂz, A3 = Q] - in (87)
where
1 2 91 Olz - 93
= — + — =—\/— + —
Q=@ +a) -z 0=F VA + == @9

A, and A; need to be expressed in trigonometric forms,
which imply dual set of solutions. For the first set of solutions,
the corresponding four roots in (58) can be written as

Y = of + inf, = of - ief (89a)
¥s = of — iof, P =of + iof (89b)

where

e*
of = Vr* cos > 0.256,,

*
of = Vr*sin (%—) — 025V -4,

e*
of=— r* cos ry + 0.259, ],

e*
of = \Vr*sin (-?> + 0.25V —A,

(90a)

(90b)

Vr*=VQ: + Q2, 6% = arctan (&) (90c)

Q,
The solutions can be derived as

& = e“V[g, cos(wfy) + g sin(wiy)]

+ €"¥[g, sin(@}y) + g, cos(wiy)] + 66 O
1 - Wy i
& =— (b + $20:'0s — gie"Vay, cos(wfy) + ay; sin(wiy)]
21
+ g,e°V[ay sin(wdy) + oy, cos(wly)]
+ g3¢*"[ay sin(wly) + as; cos(wiy)]
+ gee*Vay cos(wly) + ap sin(@iN]} ©2)
where

1 20*
oy = [(wi")z - (‘”;)2] = of — by, ap = of (1 - 'Y_l>
2 2
(93a)

Y2
(93b)

1 2w¥
Az = ‘Y_ [(‘-03")2 - (wf)z] — ¥ — dy, Op=—wf (1 - _3>
2

O3 =0y, O3z = —0O3, O4 = Oy, Q= —0p (93¢)

For (59), da; can be expressed as
dy=ay, 0y, 0y, 0y, (=1,23,4) (94a)
dy=1, (=14), dy=0 (=273) (94b)

dyy = e*i[al cos(w¥) + af sin(w})],

dy; = e[ sin(w}) + o cos(w))] %4c)

dsy = e“i[ad; sin(w¥) + af cos(wd)],

das = e*5[0f; cos(w¥) + o sin(w})] (94d)
dy = e“I[w} cos(w}) — w¥ sin(wd)],

dy = [0} sin(w¥) + 0¥ cos(w)] (94e)

dy = e“i[of sin(w}) + of cos(w})],

du = e”[wF cos(w}) — wf sin(w?)] 941)
where
* — —_
afi = ofa; + 0fa;;, of = ofa, — ofay  (95a)
aof = ofay — ofay,, af = ofa, + ofa,, (95b)
* — —
afi = of ey — wfas,, af =ofan + ofa;,  (950)
ofi = ofay + ofa,, of =ofa, — ofay  (95d)

For the second set of solutions when A, < 0, simply sub-
stitute cos(6*/2) with cos[(8*%/2) + 7] and substitute sin(6*/2)
with sin[(0*/2) + w].
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APPENDIX IIl. NOTATION
Subscripts
The following symbols are used in this paper:
1 = macropores,
a = solute exchange intensity factor; 2 = mesopores; and
b = velocity ratio; 3 = micropores.
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