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A B S T R A C T  

In this paper, conceptual models are presented to identify the effects of solid deformation on the changes 
in rock permeabilities for (a) fractured media, (b) intact media, and (c) fractured porous media subjected 
to external loads, all in steady state conditions. Finite element schemes are then developed with 
embedded correlations between induced strain and modified permeability to simulate the coupled 
flow-deformation behavior of reservior rocks tested in the laboratory. Rock specimen permeability is 
evaluated through comparison between analytical solution and numerical calculation using 'geometric 
factors'; the latter simulates the actual laboratory experiment where fluid flow and mechanical loading 
are applied simultaneously on rock samples. Numerical analyses reveal that physical properties of the 
porous media, including permeability, are significantly altered by mechanical effects, particularly if the 
media is naturally fractured. 
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1. I N T R O D U C T I O N  

Permeability controls the rate of fluid transmission in porous and fractured media. Although permeability 
represents an original geometric property of the porous system, this property can be modified when 
subjected to variations in stress. Permeability variations may become significant, especially if the porous 
medium is naturally fractured where the transmissive capacity of highly conductive fractures are 
extremely sensitive to perturbations in stress. 

If permeability is dependent on position within a geological formation, the formation is heterogeneous. 
Heterogeneities may result from faulting and fracturing induced during subsequent tectonism. 
Heterogeneities may be present at a variety of length scales, from grain scale of the order of microns to 
fault zones covering many kilometers. These heterogeneities typically induce a degree of anisotropy that 
may further control the hydraulic and transport performance of porous and fractured media. The primary 
cause of anisotropy on a small scale is the orientation of clay minerals in sedimentary rocks and 
unconsolidated sediments or the alignment of microcracks in indurated materials. Laboratory core 
samples of clays and shales show horizontal to vertical anisotropy ratios in the range 3:1 to 10:1 (Freeze, 
Cherry 1979). At a larger scale, field observations indicate a relationship between layered heterogeneity 
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and anisotropy which may lead to regional anisotropy values on the order of 100:1 or even greater 
(Maasland 1957; Marcus, Evenson 1961). Snow 1969 showed that fractured rocks behave 
anisotropically because of the directional variations in fracture aperture and spacing. 

Evaluation of anisotropic permeability magnitudes is becoming recognized as increasingly necessary, 
with core testing techniques providing a viable means to couple this analysis under a varying stress 
environment (Meng, Bai 1996). In the petroleum industry, interest is motivated from concerns regarding 
reservoir compaction and the resulting changes in reservoir production that accompany compaction. The 
present study is motivated from these interests to replicate this field behavior through an investigation of 
the coupled effect of uniaxial stress on the anisotropic permeabilities of fractured rock specimens in the 
laboratory. 

2. CONCEPTUALIZATION OF STRESS-DEPENDENT PERMEABILITY 

Neglecting turbulent flow and assuming flow within a fracture network, Louis 1969 used the parallel 
plate analog to evaluate the permeability of fracture networks containing a set of regularly spaced 
parallel fractures subject to steady state fluid flow (Figure 1) as: 

b a 
k = 12s (1) 

where k is the permeability, b is the fracture aperture, and s is the fracture spacing. 

Applying a uniaxial load to the fracture network (Figure 2), Elsworth 1989 derived the permeability 
change from Eqn. 1, by assuming the individual fractures are distinctly soft with respect to the porous 
matrix, as: 

1 
A k  = 12----~(b + s A e )  3 (2) 

where Aa is the elastic strain orthogonal to the fracture network due to application of the load. 

For relatively small fracture spacing, Eqn. 2 can be more precisely written as: 

i 
Ak = 12 [b+ (s + (3) 

The porous matrix is assumed to be stiff with negligible deformation in the above two equations. If this 
restriction is released and the contribution of deformations from both fracture and matrix are 
distinguished and incorporated, the permeability change can be expressed as (Bai, Elsworth 1994): 

1 (4) 
A k  = 12---~ sK,~ + E ] 

where E is the elastic modulus and K,, is the fracture normal stiffness. 

For homogeneous nonfractured porous media, the permeability variations can also be associated with the 
stress change (Figure 3). Instead of change in aperture, changes in either void space or grain volume are 
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the typical consequence that result in permeability changes. Application of Hertz' 1895 elastic contact 
theory enables permeability change to be expressed as (Bai, Elsworth 1994): 

Ak--ko 1 T ~  2 (5) 

where k 0 is the absolute permeability of the porous medium which can be evaluated using the concept of 

hydraulic radius (Hubbert 1940; Bear 1972), v is Poisson ratio. In this equation a negative sign refers to 
compressional loading while a positive sign corresponds to dilational loading. 

In all cases mentioned above, the stress dependent permeability is defined either within the matrix blocks 
or within the fractures, but not in both spaces. In reality, rock deformation and fluid flow contribute 
mutually to behavior, as depicted schematically in Figure 4. In combining these effects, three conditions 
must be simultaneously accommodated: (a) the effective areas of flow are accumulated from both 
fracture and matrix, i.e., permeability results from the cumulative effect of fracture and matrix 
permeabilities; (b) elastic strains are individually calculated and superposed through the summation of 
the respective permeabilities; and (c) load or stress acting on either fracture or matrix is uniform, as 
required by equilibrium considerations. 

To consider the influence of dual-porosity behavior on effective permeability, fracture and porous 
medium permeabilities are rationed according to their respective initial, in situ, volumes. This rationale is 
justified since the flow conduits in both porous matrix and fractures are strongly related to the ratio of 
respective void volume to the total volume (porosity). Using a similar concept as proposed by 
Kozeny-Carman (Bear 1972), the effective permeability for the dual-porosity medium can be expressed 
a s :  

Ak = niAki + ~Ak2  
n 

(6) 

where subscripts 1 and 2 represent matrix and fracture, respectively; and the total porosity n is assessed 
as: n = n 1 + n 2. Further in Eqn. 6, 

where 

1 
Akl = ko 1 T 

2 

(7) 

= - -  ( 8 )  
E 

and Acy is the total stress change, E and v must be determined from intact rock containing no fractures. 

Also, 

i + + (9) 
A k 2 -  12s 
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where 

Ao- 
= ( l o )  

K,~(s+b) 
and similarly, K,, must be determined from the fractured rock where deformation of the solid matrix is 

negligible. 

3. N U M E R I C A L  P R O C E D U R E S  

For the complex loading geometries and material nonlinearities of 'real' porous media frequently 
encountered in laboratory experiments, use of numerical schemes such as the finite element method are 
mandated. In the numerical formulation, the rock deformation and fluid pressure do not interact with 
each other. The coupling is recovered only through strain-permeability relationship as described 
previously. The matrix form of the finite element method can be written as: 

u F 

o ° l i p  (11) 

where 

A = fv BTDBdV (12) 

1 G = -fi L VMTkVMdV (13) 

F = fs NfdS (14) 

q = Js Mnds (15) 

where ~t is the fluid dynamic viscosity, N and M are the shape functions for displacements u and pressure 
p, within the elements, B is the strain-displacement matrix, A and G are stiffness and conductance 
matrices, F and Q are the vectors of applied boundary tractions, f, and prescribed nodal fluxes q, V and S 
are the volume and the surface of the domain, and D and k are the elasticity and the permeability 
matrices which can be defined as the constants E and k for a one-dimensional case, respectively. 

The numerical procedure can be detailed as: 

• Derive Au and Ap from Eqn. 11; 

• Calculate strain Ae from the derived displacement Au; 

• Substitute the strain into the permeability-strain relationships given in the previous section to assess 
the permeability change Ak; 
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• Determine the change of flow rate using Darcy's law along with derived Ak and Ap, e.g., 

A k  Ap 
AQ = A (16) 

# L 

where L is the flow length, and A* is the effective flow cross-sectional area. A* may be determined 
through examining a 'geometric factor', which relates the numerical solution to the analytical 
solution (simple uniform stress solution) and is determined by identifying the difference between the 
flow cross-sectional area A using Darcy's law and the equivalent cross-sectional area A* in the 
numerical computation of fluid flow and mechanical loading on a rock specimen. The geometric 
factor can be defined as G = A / A * .  Since the injection area is defined as A, which is relatively small 
compared to the specimen size, A* is in general larger than A. As a result, G is usually smaller than 1. 

4. DETERMINATION OF STRESS-DEPENDENT PERMEABILITY 

As mentioned previously, rock specimen permeability can be determined by performing fluid flow 
experiments on rock samples in the laboratory. During the test, either flow rate or pressure may be 
controlled at the fluid injection areas while either pressure or flow rate may be measured at the fluid exit 
areas. The permeability can then be derived from Darcy's law and through using the concept of the 
geometric factor described in the last section to compensate for differences between uniform flow in the 
cross-section evaluated using Darcy's law and the nonuniform flow geometry in the experimental test. 
Due to rock anisotropy, separate flow tests must be completed to distinguish between vertical and 
horizontal permeabilities in the specimen. In the following, the behavior of specific rock specimens are 
evaluated under proposed experimental configurations. 

The primary purpose of the present analysis is to determine the effects of stress dependency on 
permeability variations in three of the four modes depicted in Figures 1-4. In the following, schematic 
flows through different types of media subjected to uniaxial loading, are labeled as mode-a, mode-b, 
mode-c, and mode-d, respectively, as shown in Figures 1-1. It should be noted, however, that the 
proposed models are purely conceptual. They may not represent the actual flow and loading situations, 
neither the real material structures, nor the present finite element layout. They are designed simply for 
the interpolation of stress-permeability relationships. The numerical simulations are schematically 
illustrated in Figure 5, where three-dimensional finite element models in Cartesian coordinate are used. 
Again, the single-porosity and dual-porosity conceptualizations are represented in the stress-permeability 
relationship. Basic parameters for the modeling are listed in Table 1. The injection area is confined to 
represent flow restriction in actual experiments. Flow is maintained at steady state throughout the 
simulation. Constant rate is applied at the inlet, while the pressure is numerically calculated at the outlet. 
For simplicity of analysis, the vertical static load is uniaxial on both the top and bottom surfaces of the 
specimen, which is free to expand laterally as a result of loading. 

Comparisons of the pressure -vs- flow-rate (p-q) relationship between the stress-independent 
permeability (mode-a) and stress-dependent permeability (mode-b) are shown in Figure 6. Several 
observations may be made as: (a) the pressure -vs- flow-rate relationship is linear, (b) larger permeability 
magnitudes result in reduced pressure loss, (c) the original fracture permeability (k 0 = 200 md) is 

assumed to be twice the original matrix permeability (k 0 = 100 md), (d) the matrix is assumed to be 

impermeable (e.g., no leakoff, or k Z = 0), (e) the loading creates permeability anisotropy that yields k x = 
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y 0 

permeability reduction. The small reduction indicates the reduced influence of loading. 

The geometric factor (G-factor) now can be readily derived through comparison between the solutions 
shown in Figure 6 and the analytical solution (Darcy's law). For k 0 = 100 md, the comparisons of the 

geometric factors between the mode-b (loading) and the mode-a (no-loading) are given in Figure 7. It is 
of interest to note that G-factors are independent of the magnitude of flow rates. G-factor for mode-b 
behavior is always larger than that ofmode-a because the effective flow area A* is always smaller due to 
the permeability reduction as a result of loading. 

In contrast, very little difference is noted in the p-q relationship between the mode-c case, which contains 
loading, and the case without loading. Because the porous medium is both stiffer and less permeable than 
the fractured medium, correspondingly, smaller strains and lesser permeability changes are induced. As 
expected, a neutral result is obtained for the mode-d case, which represents an intermediate medium 
between the fractured and the intact rocks. Comparisons of the p-q relationship between mode-b, mode-c 
(no-loading), mode-c (with loading) and mode-d cases are illustrated in Figure 8 for an initial 
permeability of 100 md for the intact media and 200 md for the fractured media. Different from the 
impact of loading, there is a significant discrepancy between the fractured and the intact media (e.g., 
mode-b and mode-c). Comparisons of the geometric factors for different modes are made in Figure 9, 
which shows consistent patterns in the p-q relationship. 

The geometric factors appear to be independent of flow rates. However, these factors may be affected by 
other influencing variables. Figure 10 illustrates that an increase of a geometric factor is the result of 
increasing vertical stress and the resulting geometric factor is proportional to the applied uniaxial load. 
This increase of geometric factor can be attributed to the reduction of the effective cross-sectional area of 
flow as a result of the incremental enlargement of the mechanical load. It should be noted that the 
relationship between the geometric factor and the load is nonlinear. 

The geometric factors may also be affected by the specimen sizes. For different modes of flow and 
loading, Figure 11 indicates that the reduction of the geometric factors is associated with the increase of 
core heights. This increase in core sizes (e.g., heights) leads to an enlarged effective cross-sectional area 
of flow, and consequently results in a decrease in the geometric factors. 

5. C O N C L U S I O N S  

Significant efforts have been made by hydrogeologists, geophysicists, environmentalists, and petroleum 
engineers to quantify formation permeability, an important parameter in the determination of rate and 
magnitude of fluid flow through structured porous media. This quantification is further complicated 
because the original permeability, a geometric quantity, can be significantly modified by other factors of 
influence, such as mechanical impacts. Several conceptual models, relating rock permeability to 
mechanical loading in porous and fractured media, are presented in this paper. These conceptualizations 
are incorporated into finite element models. Numerical schemes are subsequently developed to 
investigate permeability variations that result when specimens are subjected to changes in external 
loading during laboratory experiments. The stress-dependent permeability can be determined through 
comparison between analytical and numerical solutions via a 'geometric factor'. Numerical simulation of 
the tests, in which fluid is injected at constant rate into a uniaxially loaded cylindrical rock specimen, 
reveals a strong correlation between permeability modification and the induced stress. Geometric factors 
for fractured, intact, and fractured porous media, of various initial permeabilities, subjected to differing 
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external loads are then determined. 
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Figure 1. Mode a: flow through fractured media 
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Figure 2. Mode b: flow through loaded fractured media 
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Figure 3. Mode c: flow through loaded porous media 
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Figure 4. Mode d: flow through loaded fractured porous media 
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Figure 5. Schematic flow and loading in a rock specimen 
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Figure 6. The p-q relationship between mode-a and mode-b cases 
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Figure 11. Correlation between geometric factor and specimen geometry 
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TABLES 

Paper 020, TABLE 1. 

T A B L E  1 
SELECTED PARAMETERS FOR MODELING 

Parameter Mode-a Mode-b Mode-d(no-F) Mode-c(F) Mode-d 
o.8-2 0.8:2 Flow rate Q 

External  load F 
[ Elastic modulus  E 

Poisson's ratio u 
Fracture stiffness K,~ 
Matrix porosity n.1 
Fracture porosity n2 
Matrix permeabi l i ty  kl 
Fracture permeabi l i ty  k2 
Fluid viscosity t z 
Fracture spacing s 

Unit 
Crt~3/,9 

M N  
M N / m  2 

M N I m 2 / m  

m d  
rnd 
cp 

CFFt 

100 
0.25 
100 

0.05 

200 
0.5 

0.254 

0.8-2 
le-5 
100 
0.25 
100 

0.05 

200 
0.5 

0.254 

0.8-2 

100 
0.25 

0.1 

100 

0.5 

0.8-2 
te-5 
100 
0.25 

0.1 

100 

0.5 

le-5 
100 
0.25 
lO0 
0.1 

0.05 
100 
200 
0.5 

0.254 
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