7-8..A modified..Li, Elsworth..galley 1

A Modified Gauss-Newton Method for
Aquifer Parameter ldentification

by Jingsheng Li® and Derek Elsworth”

Abstract

The accuracy of parameter estimation procedures is evaluated for a modified Gauss-Newton method applied to
transient ground-water flow. Three different approaches of evaluating the sensitivity coefficient matrix are examined,
including influence coefficient, sensitivity equation, and variational approaches. The performance of each of the techniques is
evaluated by applying & common synthetic data set. The latter two techniques are shown to perform with least sensitivity to
starting parameters and extraneous sampling noise. Where either random or systematic noise is added to the time-series data
set, the resulting predictions become increasingly more sensitive to the form of the starting transmissivity vector. It is
concluded that the modified Gauss-Newton method is attractive becsuse of its simplicity, high rate of convergence, and
modest computational demands, especially when the number of the parameters to be identified is not large.
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1. Introduction

" Solution methods for parameter identification using
inverse models may be classified as either direct or indirect
{Neuman, 1973), depending on whether the desired parame-
ters are recovered as dependent variables in the method, or
by material characteristics. A parallel categorization may be
applied if the models solve the inverse problem with an error
criterion applied either to the equations or to the output
{Yeh, 1986). The modified Gauss-Newton method devel-
oped in this work belongs to the suite of indirect methods
and incorporates Rosen’s gradient projecy, method (Rosen,
1960} to ensure that the parameter changes remain in the
range of some given constraints, The Gauss-Newton meth-
od may be used to define transmissivity distributions
directly from measured head distributions or time-series
data of heads. An objective function is prescribed to link
transmissivity estimates to the differences between mea-
sured and calculated head magnitudes. Transmissivity mag-
nitudes are modified systematically and iteratively 1o min-
imize this mismatch between predicted and known head
magnitudes.

This work compares accuracies of parameter identifi-
cation results obtained by using the influence coefficient, the
sensitivity equation, and variational approaches for the
evaluation of the Gauss-Newton direction. Inverse analyses
are conducted with varicus levels of noise added to the head
time-series data to determine the sensitivity of predicted
transmissivity magnitudes to the choice of method and
starting parameters. A Galerkin finite-element method is
applied to solve the flow equation where the distributed
magnitudes of-hs ée transmissivity and storativity are
defined as piecewise constant throughout the region, The
aquifer is subdivided into several subregions with each sub-
region characterized by constant parameter magnitudes of
transmissivity and storativity. These values are the parame-
ter unknowns in the model. The ability of the inverse model
to reach a stable and bounded solution is demonstrated by
using synthetic head time-series data sets, produced by {or-
ward analysis, and corrupted with noise of a predefined
severity.
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2, Numericai Method

The distribution of head that is developed in a confined
aquifer may be evaluated in a straightforward manner by
application of a forward finite-element method. A Galerkin
formulation is used for triangular finite elements comprising
linear basis functions and corresponding constant velocity
fields within the element. This procedure is used to evaluate
synthetic “predicted” head magnitudes and their sensitivity
to changes in aquifer transmissivities, as required in the
Gauss-Newton analysis, Use of the “synthetic” data set
enables the performance of the solution methods to be
evaluated in a definitive manner without further com-
plication by unknown domain geometry and material
characteristics.

2.1. Modified Gauss-Newton Method

Several authors have evaluated the potential of Gauss-
Newton type methods in defining the parameters of both oil
reservoirs and aquifer systems (Jacquard and Jain, 1965;
Thomas et al.,, 1972; Gavalas et al., 1976; Yeh and Yoon,
1981; Sun and Yeh, 1985; Willis and Yeh, 1987). The method
utilizes the basic optimization dictum as

Minimize E(K) = >l: Ky (=1,2...,L) ()

Subjectto &, S K< b G=L2,...,m) (B

where f=(h'—h% €)]

where L represents the total number of observations;
m represents the total number of parameters; K are the
parameters; E is the objective function; a and b represent
lower and upper bounds on the parameters; and h and h/’
represent, respectively, calculated and observed heads, The
modified Gauss-Newton method generates the parameter
SequEnce,

K"'=K"+ A"pP" 4)
where P" is a search direction; and A" is the step size for
iteration n. The method starts with an initial estimate of K"
and generates a sequence of K"'' until the convergence
criterion is satisfied. Given a vector, K*, a direction vector,

P", is sought together with a suitable step size, A", yielding a
new vector K™*', The process is then repeated until

|[E(K)| = ¢ 5

where £is a small positive number, or until a predetermined
number of iterations are completed. In order to determine
the direction, P*, a Gauss-Newton direction, AK, and a
gradient, g, of the objective function, E, are first evaluated.

Correspf"dingly
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AK ifg- AK <0
P = . )]
—g ifg-AK=0
' with AK = -3 T G

where J is a matrix of sensitivity coefficients, as later defined

~ in equation (9), and superscripts represent transpose and
* inverse. In this, revised transmissivity magnitudes are

scaled, relative to the mismatch between known and evalu-
ated heads. A projective operator, P, is introduced to ensure
that K**' will be satisfied under the applicd constraints, The

i
E definition of P is

_ 0 i(;"w“aiand Pi<0
pi= 0 Ki=bjand P.>0 (&)
P otherwise

where P"= P, The scalar magnitude of step size, A", defined
in equation (4), may be determined by quadratic interpola-
tion. The calculation procedure is iilustrated in the flow

: chart of Figure I,

| 2.2, Sensitivity Coefficienls

The modified Gauss-Newton method requires the
evaluation of a sensitivity coefficient matrix, as defined in
equation (7). For unsteady-state flowina two-dimensional,
piecewise-heterogeneous, isotropic, and confined aquifer,
the unknown parameter is the transmissivity vector, T. This
assumes that storage coefficient and source/sink magni-

tudes are known, er-may-be-estimated—withrreasemable-
beunds: Thus the sensitivity coefficient matrix can be

~ expressed as
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" oh o b 7
dT; dT: ITm
dh: dh: dh;
I=| 5T 9T 9Ta ©
| 3T, 9T, 9Te |

where the index L represents the total number of observa-
tions: and the index m represents the number of components
comprising the transmissivity vector. Three approaches are
commonly used to calculate the sensitivity coefficient
matrix. These are defined as the influence coefficient, sensi-
tivity equation, and variational approaches, described
briefly in the following.

2.2.1. Influence Coefficient Approach

This approach is based on 2 finite-difference represen-
tation where the sensitivity coefficients can be expressed as
(Becker and Yeh, 1972; Bard, 1974},

éh

o LT+ AT, Te)
aTi

= [h.(x, ¥, i, Ti, T:, .

mx, v, 4 T, Ty ooy Tio ooy Tw)l/ AT (10

where hi{x, y, 1, 2 is a solution to the flow equation; and

ATiis Wremem of Ti, with
bc\{d“ AT, = oT; (11)

where 107 < o« < 107 This method solves the inverse
problem according to the method of Becker and Yeh (1972).
In this approach, one difficulty is the choice of the transmis-
sivity increment, AT:. The magnitude of the transmissivity
increment, AT, is selected by a trial-and-error procedure. A
total of m + 1 simulation runs are needed to compute the
sensitivity coefficient matrix.
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2.2.2. Sensitivity Equation Approach
Taking the partial derivatives with respect to the trans-
missivity increment, T;, for the discretized form of the flow 2.2.3. Variational Approach
equation, yields (Distefano and Rath, 1975; Li et al,, 1985) For the variational approach the sensitivity coefficients
dh, can be written as (Jacquard and Jain, 1965; Carter et al,,
Bhy, + C ™ - + Brh=0 (12) 1974, 1982; Sun and Yeh, 1985) (ﬁ
b bo!d( See. ghy 1 X ]
whe e T —
e onsual masspl 9T, 12 m=1 & A
dh - - -
hy = ';:F“ (13) [(bihi + byh; + bahu) (bidi + big; + bedi) +
! (cih; + ohy + eh)(e:d + gy + Ckak)}] (19}
e B=ffT (f?i‘i 90y %% 290 4eay  (14) ith h | "
" 0N ax ax dy dy y wit
“: = Qs - s e A
o =[] Sbpcby dxdy (15) Gelmar = 9:[(K = m + 1) A7] — g, [(K — m) A7]
e g, L (302 300, 36, 901y =130 @
a& Bripe = J 89T, N ox ox + - dy dy dxdy  (16) where h is the solution of the flow equations. Z.; represents
;’ et the sum of all elements that have a common node, i; Aristhe
and qbn are the basis functiong of the element, eompoising- time-step size; K is the number of time steps; and q is the
: = In this, B is a “conduc- solution of the adjoint problem
. tance” matrix, C is a “storage™ matrix, and By defines a P
rate-ofchange of the transmissivity values applied to the ) i (T ) =G —
system. For the triangular element defined by corner nodes ax
ijk, as illustrated in Figure 2, the basis functions ¢, ¢;, and
¢ are defined by Gi(x, y} H (t) (2D
1 controlled by initial and boundary conditions
¢nﬁ'2'z:(an+bnx+-5n)/) (l'}:i,j, k) (17) q(x‘y’O)m{} on(x,y)eﬂ
where g(x,y,t)=90 on{x,y) €
= Ve~ XeVi By — 3= % — X, 99
PE XY T XY DTy T G KT X (%30 =0 on(x,y) € Iz
LEXRY N B =Evi—y GEXxi— X (18) n
o - - where
BT XY AT BkTFYiTy =X X
- and A. is the area of the triangular element with vertices at Gi(x,y) = { e (%, y) €
coordinates (%i, vi}, (X;, 1), and (xx, yx). This defines the 0 otherwise
governing equation which must be evaluated using atotal of and
m -+ | simulation runs.
0 fort=0
H(y) =
i fort>0

where piis the area of the subdomain, {1, shown in Figure 2.
In this, 0} represents the flow region where head and flux
boundary conditions are applied on the boundaries I'y and
I";, respectively. In this approach, L'+ [ simulation runs are
needed for a total of L’ observation wells..



7-8..A modified..Li, Elsworth..galley 8

3. Evaluation of System Sensitivity

‘The influence of a variety of factors on the accuracy of
the resulting parameter determination is examined. Three
methods of calculating the sensitivity coefficient matrix are

~ evaluated, together with the influence of data noise and

time-series truncation on the resulting transmissivity esti-
mates.

3.1. Iinfluence of Sensitivity Coefficients
The influence of sensitivity coefficients, evaluated using

- each of the three approaches described previously, is exam-

ined with respect to convergence rate and accuracy of the
resulting parameter evaluation. A modified Gauss-Newton
algorithm is developed to evaluate these effects for a number
of synthetic data sets representing transient flow in a hetero-
geneous, isotropic, confined aquifer. The aquifer configura-
tion and the finite-element discretization of 59 nodes and 92
elements are illustrated in Figure 3. A constant head of
magnitude 100 m is applied to the lower boundary with the
remaining portion of the perimeter defined as zero flux, as
shown in the figure. Initial conditions are of a uniform head
of 100 m. In the generation of the synthetic data set, the
storage coefficient, S, applied uniformly over the aquifer, is
assumed known and a single weil, pumping at constant rate
is applied, as shown (Figure 3). The remaining parameters to
be identified are the components of the transmissivity vec-
tor, T.

In the first model, the flow region is divided into subre-
gjons 1 through 5, of discrete transmissivities of T) = 100
m /day, T: = 500 m /day, T; = 5000 m’/day, T4 = 20000
m?/day, and Ts = 1000 m }/day. This distribution is consid-
ered the “true” values of the parameters to be identified since
the head response is determined by running a “forward”
analysis of a known system. Observation wells are located in
each of the subregions, as illustrated in Figure 4, and the
time history of drawdown determined. A total of 20 obser-
vations are recorded using a uniform time mcremem of one
day with a prescribed pumping rate of 30000 m }/day. The
basic data related to transmissivity identification are listed in
Table 1. The results reported in Table 2 are identified by the
modified Gauss-Newton method in which the sensitivity
coefficient matrix is evaluated from the sensitivity equation,
variational, and influence coefficient approaches. The
extreme sensitivity of the influence coefficient approach

© results to the selected magnitude of the influence parameter,

&, in equation (11) is shown in Table 3 defining the broad
variability in convergence. The iterative procedures are sta-
ble when the sensitivity coefficient matrices are calculated by
either the sensitivity equation or the variational approach.
This desirable stability is not, however, the norm when the
sensitivity matrix is evaluated using the influence coefficient

- approach, as apparent in Table 3 where large residual errors
. remain in the transmissivity estimates, This is the case, even
. though the coefficient «, in equation (11), is selectively and

optimally determined. This apparent lack of accuracy is in

- agreement with the previous observation that an appro-

priate increment of the identified parameter is difficuit to
determine (Li et al., 1985; Willis and Yeh, 1987).
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3.1.1. Additional Influencing Factors

To enable the influence of auxiliary factors on the
accuracy and reliability of the resulting parameter estima-
tion to be deconvolved from other effects, the subdivision of
the problem is again reduced. In this second model, the flow
region is divided into two subregions, each penetrated by a
single observation well, as illustrated in Figure 5. In the
following cases, the Gauss-Newton direction s calculated by
the sensitivity equation approach.

3.1.2. Case 1

The true values of the transmissivities, Ty =500 m ‘/day
and T; = 1000 m’/day, are used to generate the “synthetic”
time history of observation heads as described previously.
Similar boundary conditions and model constraints are
used, and the predicted transmissivities are defined for dif-
ferent choices of objective functions, E, in Table 4.

Retaining the boundary conditions and all original
data fixed, and changing only the storage coefficient, a new
set of head “observations™ is generated. This time series is
used to invert for the resulting transmissivity distribution.
Where storativity is reduced by one order of magnitude to
S == 0,000}, “true” transmissivity values are again recovered
within five iterations of the inverse solution, as documented
in Table 5. Apparent from this behavior is that the method
successfully evaluates the parameter magnitudes, even when
the number of independent observations in the time series is
tow (in this case only six values at each of two observation
wells). Despite this restriction, the resulting predictions
remain accurate.

3.1.3. Case 2

The influence of the choice of an initial transmissivity
vector on the resulting prediction is also examined. Using
the synthetic data applied in Case 1, the results of start-up
using a variety of initial transmissivity vectors are given in
Table 6. The final parameter estimates are relatively insensi-
tive to the starting values although the rate of convergence is
slightly affected. Similarly, changing the solution con-
straints has little influence on the resulting transmissivity
evaluations.
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3.1.4. Case 3

The effect of noise in the time history of head on the
resulting evaluation of transmissivity is examined. Noise is
defined as a random or systematic modification of the “real”
or“ideal™head response, recovered from the forward analy-
sis, The noise is normally distributed about the mean head
and is defined by a standard deviation of noise to drawdown
of, o = 0.2. This noise is added to the time-series data of
Case 1, representing two-zone transmissivities of Ty = 500
m’/day and Tz = 1000 m’/day. Changes to the objective
function, E, and the transmissivities, T, in the iterative
procedure are given in Table 7. The maximum ratio of noise
to drawdown, Mg, is about 209, and the relative error, Mg,
of the transmissivities is about 7.5%, under this condition.
As noise magnitude is halved, the relative error, Mg, is
halved and transmissivity predictions improve, as antici-
pated,

- 3.1.5. Case 4

The effect of systematic, rather than random, noise on
the identified transmissivity results is also examined. Typical
sources of noise may result from inappropriate numerical
discretization or through improper representation of the
boundary conditions or transmissivity and storage proper-
ties. Adding either —0.1 m or —0.9 m noise to each of the
time-series data points generates two modified data sets,
The transmissivities identified using these data are identified
in Table 8. The maximum ratios of noise to drawdown, Mg,
are 2.7% and 24.6%, and the maximum relative errors, Mg,
are about 5.8% and 6095, respectively. This illustrates the
significant sensitivity of the method to the presence of sys-
ternatic noise, and highlights the practical problems encoun-
tered during routine application of these methods to real
data,

3.1.6. Case 5

The influece on the resuiting parameter evaluations of
restricting or truncating the time-series data set is examined
by using oniy the first four data points of the six point data
set originally used in Case 1. Even with the truncated time-

; series record, the “true” magnitudes of the parameters are
. essentially returned (T, = 49997 and T: = 1000.002
. m*/day). Where random noise of maximum ratio to draw-

down of about 20% is added, the resulting parameter esti-
mations are 302 m%/day for zone I, and 1031 m%/day for
zone 2. Comparing the results with those of the noise-free

. system, there is little difference between predictions for the

complete (12 observations) and truncated (B observations)
time series. This is not the case where noise is present, and

- the accuracy of the evaluation is considerably degraded for
- the truncated time series.
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4. Conclusions

The modified Gauss-Newton method is shown to be
attractive for aquifer parameter identification due to its
simplicity, modest computational demands, and high rate of
convergence. Fewer than five iterations were required in ail
the examples reported in this study. The observed rapid
convergence is especially true when the number of the
parameters to be identified is not large. In order to guaran-
tee the accuracy of parameter identification by the modified
Gauss-Newton method, a key step is selection of the
appropriate sensitivity coefficient calculation approach.
The sensitivity equation and variational methods are identi-
fied as the preferred methods for calculating the sensitivity
coefficients. The influence coefficient approach is difficult to
apply in practice since appropriate increments of the
unknown parameters must be determined from a trial-and-
error algorithm. Accurate evaluation of the sensitivity coef-
ficients requires an accurate calculation of heads. Conse-
quently, all factors influencing the evaluation of heads wiil
have an effect on the sensitivity coefficients,

Two factors affecting the accuracy of parameter identi-
fication are the magnitude and “type” of noise, and length of
the time-series data record. It is apparent from this study
that the estimated parameter values are not strongly
dependent on the choice of the initial values nor on the
parameter constraints. The accuracies of the identified
parameters are only slightly related to the length of the data
record, in the absence of noise, but are strongly corrupted
where significant noise exists.

The relative influence of noise may be indexed by the
ratio of noise to the change in drawdown with time since this
defines the data content of the signal. Where noise within the
signal is systematic, rather than random, a much greater
corruption of the resulting parameters ensues. One possibil-
ity in reducing this influence of random noise is by prefilter-
ing the head data to remove high frequency components of
the drawdown record. If the source of noise is systematic,
then filtering may remove valuable information describing
the aquifer. Care must be taken in selection of the filter
thresholds to ensure that noise, alone, is removed, rather
than components representative of the physical system.

The evaluation of transmissivity magnitude is more
sensitive to the choice of method than the number of zones
defined by the available well data. The influence coefficient
approach performs least well, and the sensitivity equation
and variational approaches perform much better and at
about the same level of accuracy. For the variational and
sensitivity equation approaches, there is no marked change
in the ability to match the “true” transmissivity values with
change in the number of observation wells and correspond-
ing transmissivity zones.

The study details an evaluation of the effect of noise in
recorded field data on the evaluation of transmissivity mag-
nitudes recovered from inverse analysis. Although the
methods presented appear capable of resolving transmissiv-
ity distributions, the conditions of the aquifer used in this
study are quite well-defined. Flow is two-dimensional, con-
fined, and “averaged” over the aquifer thickness, No local
three-dimensional effects are included, and monitoring
locations described in this analysis provide no evaluation of
this possible effect. In addition, the external boundary con-
ditions are assumed well-defined, with these data typically
being difficuli to determine in reality.
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Table 1. Data Used in Transmissivity Evaluation for the
Five Zone Geometry of Figure 4

Transmissivity magnitudes

Transmissivity True Initial Lower Upper
zone value value bound bound

H 100 50 40 150

2 500 250 200 700

3 5000 7500 3000 8000

4 20000 25000 1700 36000

5 1000 1400 750 1700

. (All values in m'/day.)

CT8.A raodified..Li, Elsworth..galley 4

Table 2. Parameter Estimation Results for the Fifth Iteration Using Three Solution Approaches

Evaluated transmissivity magnitudes by zone

Solution method i 2 3 4 5
True magnitudes 100, 500. 5000. 20000. 1000,
Sensitivity equation 99.989 500.000 5000.686 19998.170 1000.001
Variational 99.989 500.000 5000.686 19998.170 10600.001
Influence coefficient 67.373 392.541 5332.794 17000.000 986.248

- (Al values in m*/day. Influence coefficient method uses & = 0.001.)
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Table 3. Parameter Estimation Results from the Influence Coefficient Approach Using 0.0001 = « < 0.601

Evaluated transmissivity magnitudes by zone

Sensitivity coefficient, a I 2 3 4 ]
True values 100. 500. 5000, 20000. 1000.
0.0001 60.223 700.000 3000.060 17000.000 750.000
0.00i 67.373 192.541 5332794 17000.600 986.248
0.0015 55.382 272.641 4763.701 30000.000 750.060
0.002 40.036 £99.056 3000.000 19485.220 992.673
0.005 40.000 200.000 8000.000 170:00.000 750.000

{All values in m’/day and determined after five iterations.)
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Tabie 4. Changes in the Objective Function,
E, and Transmissivity Values, T, with
Iteration for the Two Zone Geometry

Evaluared
transmissivity
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Table 6. The Influence of Starting Transmissivity Magnitude
on the Resulting Parameter Estimate, Two Zones

Iteration no. Objective function, £~ Zone | Zone 2

True values . 500, 1600,
t 24.31203 384,575 1002.445
2 0.19627 475418 1004.877
k) 0.00529 499,395 1000.087
4 0.00000 499,697 999,998
5 0.060000 500.001 999,999

(Storativity magnitude of § = 0.001. Transmissivity values in
m?/day.)

Table 5. Changes in the Objective Function,
E, and Transmissivity Values, T, with
Iteration for the Two Zone Geometry

Evaluated

Initial values Final values
Zone [ Zone 2 Zone | Zone 2
True values 500. 1600,
250 1300 500,001 999,999
750 700 499,684 1000.0602
300 800 500012 999,999
780 1450 499 939 1000.000

(Transmissivity values in m%/day.)

Table 8, The Influence of Starting Transmissivity Magnitude on
the Resulting Parameter Estimate Where Systematic Noise
Is Incorporated into the Data Record; Systematic Naise
Is Defined as a Percentape of Head; Two Zones

Initial values Final values

Zonel Zone?2 Zone | Zone 2

Systematic noise

sransmissivir —_— True values 500. 1600,
Y 0.1 250 1300 528.927  978.290

Iteration no. Objective function, E~ Zone | Zone 2 -0.6 250 1300 800.000 §19.002
True values —_ 500. 1000. (Transmissivity values in m*/day.)

1 22.01094 394,431 1020.620

2 0.02263 493,927 1000.276

3 0.60062 499,944 1000.003

4 0.00000 499.936  1000.000

5 0.00000 499,95] 10600002 i

(Storativity magnitude of S = 0.000]. Transmissivity values in
m?/day and determined after five iterations.)

Table 7. Changes in the Objective Function, E, and
‘Transmissivity Values, T, with Iteration for the Two Zone
Geometry Where Random Noise Is Applied to the Data

Ewluated
transmissivity

Iteration no. Objective function, £ Zone | Zone 2

True values — 500, 1600,
| 28.28925 368.093 1064.230
2 4,14652 443.004 1007.997
3 399459 460.610 1004.261
4 3.99018 460,355 1004,302
5 3.99021 461,792 1004.072
6 3.99010 462.486 1003.97%

(Storativity magnitude of S = 0.001. Transmissivity values in
m?/day.)

Input parmeters, K.°
and constraints, a,b.
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Fig. 1. Flow chart illustrating optimization procedure,
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Fig. 3. Finite-element mesh used in the analysis.
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