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A new method for solving the fluid transport equation for ad-
vection dominated flows is introduced in this paper. A trans-
form modifies the asymmetric fiuid transport equation into a
symmetric positive definite equation. Symmetry is achieved
by imbedding the first order spatial derivative of the frans-
port equation into the second order derivative term through
functional transformation. A variational formulation for the
finite element approximation preserves this desirable fea-
ture to generate a symmedlric system of equations. For the
steady state case, the proposed method has been validated
against three methods: analytical solution, Galerkin finite
element solution and upwind-weighted finite element solu-
tion, The results indicate that the proposed method gives
the best approximation to the analytical solution. Thergls no
constraint on the magnitude of Peclet number. For the tran-
sient case, validation shows that the proposed method is
accurate but application is restricted fo certain Peclet num-
ber maghitudes.
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In diesem Aufsalz wird eine neue Methode zur Lésung der
Dispersionsgleichung vorgestelit. Durch eine Transforma-
tion wird diese asymmetrische Stofftransportgleichung in
eine symmetrische, positiv definite Gleichung umgeformt.
Diese Umwandlung erfolgt durch Eingliederung der ersten
rdumlichen Ableitung in der zweiten mittels eine Funktional-
transformation. Hierbei erm&glicht der Variationsansalz der
Methode der finiten Elernente die Generierung eines sym-
metrischen Gleichungssystems.

Die Validierung des neuen Ansatzes erfolgt durch den Ver-
gleich mit drei unterschiediichen L&sungstechniken, es
sind diese: analytische Lésung, Galerkin-Verfahren und die
‘upwind’-Galerkin gewichteten finite Elemente. Die Er-
gebnisse fir den stationdren Fall zeigen, daB unabhéngig
von dem untersuchten Peclet-Zahibereich, die neue Metho-
de die beste Anndherung der analytischen Lisung darstellt.
Dagegen sind fiir die instationdre (zeitabhdngige} Aufgabe
gute Ergebnisse filr niedrige Peclet-Zahlen erzielt worden.
Fiir héhere Peclet-Zahlen sind die Ergebnisse weniger
Cufriedensteilend. j

Introduction

Problems involving contaminant transport have attracted in-
creased attention due to their importance in the field of hydro-
geology, mineral, civil, and petroleum engineering, among oth-
ers. Solution of the advection-diffusion equation is particu-
{arly challenging as Peclet number, indexing the ratio of ad-
vective to diffusive fluxes, increases. At high Peclet numbers,
one is usually forced to choose between accepting the pre-
sence of nonphysicail oscillations within the solution or suffer-
ing unwanted numerical dispersion. Of key importance is
awareness of the changing nature of the governing equation.
Where diffusion dominates, the equation is parabolic and
causes no particular problem in numerical solution. Where
advection dominates the behavioris analogous to a first order
hyperbolic partial differential equation that exhibits 2 frontal
character and creates annoying difficulties in numerical solu-
tion.

Considering first a simple one dimensional diffusion-advec-
tion (DA for shorl) equation

7
dz

L
3z

dc
=3 (1)

where c (x,1) is concentration with coordinate, x and time, t; D
is the dispersion coefficient and v is fluid velocity.
The initial and boundary conditions may ba written as

{ ¢(z,0)
c(0,1)
e(L,1)

H

0
e (2)
o

where Lis the end point in the domain, unaffected by concen-
tration change as x - . An alternative boundary condition to
eqgn. (2} may be given as follows
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de(L, t) —0 ()
Oz
representing a closed system with no escape of mass.
For dimensionless representation, let
C(X,T} = c{z,t}/c(0,1)
X=z/L
T=DiL {4)
B=vl[D.
Equation (1) is therefore transformed to
*Cc ac  oc
2 - gl % 5
o Pax T AT )

The initial and boundary conditions under egns. (2) and (3}
become

C(X,0)=0
C{0,Ty=1
(L, Ty =0 (for prescribed conceniration)

8C§L,T2 = {for preSCTibﬁd quI)

Any attempt lo solve egn. {5) for large § by any numerical tech-
nique leads to osciliatory results {1]. This numerical oscilla-
tion was first recognized by Price et al. [2]. Ta circumvent this
difficulty, Guymon [3] applied a functional transformation to
eqn. (B) and modified eqn. {5) into a symmedtric finite element
system equation, which effectively suppressed the numerical
oscillation for smaller 7. The most successiul technique in
eliminating numerical oscillations may, however, be attributed
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to the application of the upwinding method [4] modified from
the finite difference iteration. However, despite the utility of
this method in reducing spurious oscillations, excessive
smearing or numerical dispersion is arbitrarily added to the
solutions.

Results for higher dimensional elements m two and three di-
mensions where low element continuity (C% is maintained re-
suits in no net improvement [5]. Alternatively, higher order of
elements (C') using cubic or bicubic Hermitian interpolating
functions together with collocation finite element methods
may concurrently minimize oscillation and smearing {6, 7, 8].
However, the computational costs incurred in using C! ele-
ments are high and formuiation of the problem ofien turns out
to be cumbersome.

Itis not clear where the numerical oscillation is caused by the
asymmetric feature of the first derivative term in the DA equa-
tion orif other contributing factors are equally important. Effort
has been made by Leismann and Frind {9] to achieve matrix
symmetry through placing the advective term at the old time
level in lime marching. The resulting numerical errors are mini-
mized by introducing an artificial dispersion term and by opti-
mal ime weighting of all terms on the basis of a Taylor expan-
sion of the governing equation.

in the sections that follow, some alternatives for calculating
DA equations are presented. The analysis covers both steady
state and transient cases. in all instances the new DA equa-
tion has been solved using the finite element technique in a
variational formulation that leads impilicitly to a symmetric,
positive definite system matrix that can be effectively solved
by a canjugate gradient method. The study shows thatthe new
methods are promising in concurrently minimizing numerical
osciliations and spurious numerical dispersion.

1. Classical Analytical Solution

An approximate analytical soiution is available for eqn. {5)
with initiaj and boundary conditions (8} for the prescribed flux
[10]where the one-dimensignal medium is infinfte. This equa-
tion is usually expressed as

O =ay +as+aztay {73
where
ay = «;uerfc J;\/Dv*:]
L =1 [ -+ vt vx
az = yerfe 2\/—52] ezp( ]j'
_ (8)
a; = jerfc _——LQLQ_th Ui} czp(EDL—} {2 + T“(?'L —z) +v2]t)-]
ay = «‘/ c:r,p [MDIi ““]j”( - T -+ ut)? ]

where eric is the complementary error function.

2. A New Method for the Steady DA Equation

The first derivative term in egn. {5) may be eliminaied without
defeaturing the DA equation. Fortwo dimensional steady state
franspott, the DA equation reduces fo

o0
552 ~big5 5 x* = )
12 Bd. 47, Hell 1, Januar 1894

with identical boundary and initial conditions expounded in
eqn. {B) except that X; replaces X.
Assuming

L9
= gax, (10)

where ¢ is an arbitrary function, enables ¢ to be defined as
¢ = doezp(FiX5)

where gy is the function ¢ at its initial value,
Similarly, an analog to equation (9} may be defined as

.
9% (d’ﬁ)

where w is another arbitrary function. From the development
ofegns. {10} {11}, and (12),itis apparently amenable to write
from eqgn. (8)

{11)

1 8¢ 9
$aX, 90X,

FPab

. 12
+ 5y (12)

F] ., ac
-a-)\—,i{e:xp( -8, X )ax}w{}

it can be readily checked that egn. (13) yields the exact form of
eqn. (9). Analytical solution of (13) may be easily obtained (for
conditions in eqgn. {6) and for the one-dimensional problem
only):

(13}

1 o exp(BX)

Rl g -y el g )]

{14)

3. Finite Element Discretization

To accommodate more complex boundary conditions and ar-
bitrary heterogeneous bodies, numerical technigue such as
the finite element method may be adopted. For simplicity, as-
sume a one dimensional discretization with egn. (9) as a gov-
erning equation. To achieve a symmetric matrix form as in
eqn. {13}, instead of using a Galerkin method, we turn to the
variational formulation. The functional in egn. {13} can be ex-
pressed as

=%/:‘{exp( ax'}(if’;) }dX

To discretize the domain with K elements, we write

{exp ﬁ)x)( dX) }dX
or

g L5 ot an L GV
I = 5[\_} {exp{——J,\) ((;\_, N ( é )) }d,\

Where N is the shape function for the element e. Minimizing
the funclional, J, with respect to nodal values G;, (i=1,2, ...k}
vieids the following system equations in matrix form

{15)

J = EJ(‘ Zf

=1 * X

(16)

(17}

k

5o ACt =

e=i

{18}
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where

a0 = [ erp(—ﬁX)( N;

T
i Nk

! 'Ff !
NN Nk)dX (19)

NI N, N

2

)= (C; Cips)” (20}
where T represents the vector transpose.

Assuming linear interpolation functions N'® in each element,
and ailso assuming that the function exp (-G X) is constant over
each element vields the symmetric maftrix

o exp(—=AXEN [ 1 -1
AV === ] {21)

where | is element length.

4. Validation of Proposed Method

To validate the proposed method, four alternative methods
are selected for comparison. These are analylical solution
{14), the Galerkin finite element method, the Galerkin method
with upwind weighting and eqn. (18) referred henceforth as
the proposed method.

For the parameiric analysis, ioczl element Peclet numbers in
the numeric methods are chosen between 0.01 and 10.
Among the four methods, numerical oscillations are observed
only in the Galerkin method when the Peclet number is equal
to 10 {Fig. 7}. Both the Galerkin method with upwind weighting
using an optimal weighting coefficient and the proposed me-
thod using eqn. {18) exhibit oscillation free behavior even for
the highest Peclet number of 10. The proposed method gives
tha best approximation to the anzlvtical solution as illustraied
in Table I and Fig. 2 for a Peclet numberof 1 and Fig. 3 fora Pe-
clet number of 10, In both cases, unwanted numerical disper-
sion is less severe for the proposed method than for the up-
wind weighted method.

1.8
Pn = Peclet number

s—o—s Py =001 I/’\\

1.8 T Pas0d ! \
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b i |
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Fig. 1: Steady State Fluid Transport by Galerkin Method

Upwind weightling technigues are developed to minimize nu-
merical oscillation, as quoted by Fletcher[11], and all fully up-
wind schemes are osciflation free. Upwind weighting is spe-
cially designed to compensate fer the asymmetric feature re-
sulting from the presence ofthe first order spatial derivative in

Erdol und Kohte « Erdgas - Pelrochemie vereir:2t mil Brennstoll-Chemip

Table I: Concentration versus distance (a}

Distance Analytical Proposed Upwind
0.0 1.0000 1.0000 1.0000
G4 0.9993 0.8883 0.8888
6.2 0.9997 0.9788 0.9727
0.3 0.9991 0.9676 0.9492
0.4 0.9976 0.9560 0.9151
0.5 0.9933 0.9421 0.8657
0.8 0.9817 0.9220 0.7939
0.7 0.8503 0.8845 0.6897
0.8 0.8847 0.7588 0.5384
0.9 0.6322 0.681 0.3188
1.0 0.0000 0.0000 0.0000
e ‘h“““t=::rm ______
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Fig. 2: Steady State Fiuid Transport by Various Methods (a)
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Fig. 3: Steady State Fluid Transport by Varicus Methods (b)

the governing eguation, it therefore appears that if system ma-
trix generated by the DA equation can be modified into a sym-
metric form, the numerical oscitlation can, in most cases (not
in ail cases), be eliminated.
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5. Error Analysis

In terms of accuracy, Table il indicates the maximum error be-
tween the analytical solution and sclution by the proposed
method in which the element spacing has been progressively
reduced. In the unit length system, 5, 16 and 20 elements are
used, respectively. The order of accuracy, £, can be estimated
by the eguation.

€1

r = logy | —
es

2

where e, represents the error for the element with lengthl,
and e (%} is the error for the element with length £,

(22)

Table |i: Error between analytical and proposed methods
Scheme

20 elements
0.0622

10 elements
0.0658

5 elements
0.0792

Max. error

The improvement in the order of accuracy between 5 element
and 10 element models is 0.267, while between 10 element
and 20 element models it is 0.081. It may be inferred from this
trend that increasing the number of elements results in a di-
minishing improvement on solution accuracy.

Similarly, the order of accuracy for the upwind weighting me-
thod may be obtained as shown in Table Il The improvement
in the order of accuracy between 5 element and 10 element
models is 0.376, while beiween 10 element and 20 element
models itis 0.179. It may be noted that the absolute errors are
substantiallylargerthan those inthe proposed method shown
in Table I1.

Table 11l: Error between analytical and upwind methods

Scheme

5 elemenis

10 elements

20 elements

Max. error

0.5041

0.3884

0.3430

The Galerkin method, on the other hand, although subject to
numerical oscillation, is sensitive to the spatial discretization. it
can be seen in Table 1V that a dramatic reduction in error re-
sults as the number of elements increase from 10 to 20, The
improvement in the order of accuracy between 5 eiement and
10 element models is 0.462, while between 10 element and 20
element models is 2.215 calculated by eqn. (22).

‘Table IV: Error between analytical and Galerkin methods
Scheme

5 elements

0.3647

20 elements
0.0607

10 elements

0.2647

Max. error |

The above phenomena imply thal numericat oscillations and
computational accuracy are paradoxically linked. Conse-
quenily, partial influence of these characteristics may require
to be tolerated.

6. Efficient Solution of the Transient DA Equation

In fluid transport problems the steady state is generaliy of lim-
ited relevance; therefore interest is focused on transient be-
havior in this section. Problems of numerica!l dispersion and
oscillation are of equal importance to the steady state case
but additional probiems related to time stepping, must be con-
currently addressed. Thus, correct and adequate time discre-
tization is critical in many circumstances and is controlled by

14 Sef A7, Hefl 1 jnnuny 1982

the Courant number. The Courant number, C, = VJl/!, repre-
sents the ratio of front propagate distance within a time step
increment (V41 to element length, i

6.1 Modified Guymon’s method for transient fluid
transport

An alternative to soiving eqn. (5) can be referred to Guymon's
work [31.Inthe foliowing, however, some modificationsto Guy-
mon’s method are proposed to accommodate boundary con-
ditions {6) in a transient analysis {referred in the following as
MTA).

If we assume in eqn. (5) that

X
7o Ce;tp(m,ﬁ——)

5 {23)

Taking a first differentiation with respect to X

o= (-03) (5 -50)

it follows directiy that the second order derivative is

{24)

8y X ac g arc

axz = ooF ("ﬁg} (_‘B'a_)"{" FEOT a,x'f) (25)
Substituting eqgns. {23) and (25) inte

iz 2 d

T 28

enables eqn. {5} to be directly recovered.

Itis particalarly significant that no first order spatiat derivative

terms are present in eqn. (26). Corresponding to ean. {8), re-

calling eqn. (23), the initial and boundary conditions must be

transformed as
U{X»G} =0
70, T) = Cy =1 4 (27)

(L, T} = Cyezp{—-5) =10

lfboundary condition is the prescribed fluxin eqn. (6)thenthe
following requirement must also be accommodated:

on B 3
(ox+47), =

The functicnal for eqn. {26) and the associated conditions of
eqn. (27) can be written as

(28)

N I L LT
1 Ol By 2 gy
A {ax T T

Soa=l T M)

J e {29)

where at local coordinate system, f = VI/D. Minimizing the
functional J with respect to 5 generates a system of equation
such that

k

b’y [gic)qt:) 4 Gl =

ra—

(30)

ewl
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where the individual matrices are

B €n (31)
) €12 €2
2
gy =¢en = '*‘?- + "1%—11;
(32)
Ern = Y 2 I Tt
12 = €3 = T~ 94D
i1
(e) . 27
Go=3 ( 1 2 ) (33)
7 = i i) (34)
O Omia "
(e} = J 208 ML
7 { 5 ot } (35)

In this particular formulation eqn. (30) is both symmetric and
positive definite. After obtaining the solution for #;, the follow-
ing equation has to be used to retransform z; to obtain nodal
concentration G, as

C;= mewp(ﬂg) (36)

This transformation may cause problems ifthe Peclet number
becomes larger. However, this may be remedied by reducing
the element length, |, although this manipulation may be coun-
ter productive.

6.2 Validation of modified Guymon's method

The behavior ofthis modified method may be examined. Fig. 4
shows a comparison of concentration versus distance from
the source using three methods: analytical solution, the Gal-
erking method and the MTA method for the case of a Peclet
number of 0.01 and T = 1. Unfortunately, both Galerkin and
MTA methods exhibit numerical instability when X < 0.3. How-
ever, MTAvields a marginally closer approximation to the ana-
lytical solution than the Galerkin method. For T=5, again a
slightly better fit to the analytical solution is achieved by MTA
over the Galerkin method as illustrated in Fig. 5.

L
/f".\\
~ t.zd b
o i kY
; Y
) 1'\ o—o—o  Anslytical
5‘-"“ kY » MTA
c iy
.;- 0.0+ '_}\ =% Galerkin
g N AUT=1and
£ 0. N Peciet number = 0.01
ta
v NN
- 8.4 ‘\Q
b ::re\..__
u Tl
£ 0.2 T
IR S i
o ‘-‘:‘:-—'.:::""'-?a- .
AR RER A AR R R AR E AR AR AR A AN RERR R R
n.o o.2 o.4 o.8 D.& 1.0

NELATIVE DISTAHCE {X/L)
Fig. 4: Comparison of Fluid Transport by Three Methods {a)
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Fig. 5: Comparison of Fluid Transport by Three Methods (b)

The dominance of the first order spatial derivative term in the
DA equation may notbe the only source ofthe numerical oscil-
lation. To define the relative importance of sources, a higher
order time stepping scheme such as the Crank Nicolson me-
thod together with conjugate gradient method as a system
equation solver, is applied to a similar problem with a higher
Peclet number of 0.1. The result is giver in Fig. 6, where the
MTA method vields a considerable improvement over the Gal-
erkin method and is largely free from oscilation. The impor-
tance ofaccurate time discretization is clearly apparent in this
example,.
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0.0 0.2 B4 o.s 0.8 1.0

RELATIVE DISTANGE (X/L)

Fig. 6: Comparison of Fluid Transport by Three Methods {c}

6.3 Proposed method for solution of the DA equation

The MTA method works, however, subject to the following limi-
tations:

a.The tranformation of eqn. {23) is the result of a function pro-
duct {since C=C(X, T)1. The variational formulation has to be
maodified if the boundary or initial conditions are changed.
b. In the formulation, # is restricted to constant values, oniy.
However, these restrictions can be removed if a proposed me-
thod is used (referred to MTB method).

A general two dimensional DA equation may be written as

&*C ac aC

ax: " Pex, < ar (87
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Foliowing a similar derivation o that in steady state case, we
obtain from eqgn. {37)

ac

ac
b’%; {Bxp(“ﬁ;X;)"gj{*‘j} = ﬁzp(WﬁcXi)'g'f (38)

For a variational formulation, the functional J can be given for
eqn. (38) as

Xi dc\? dc\?
:«é s {emp(-—ﬁ;X,-) (E—X—;)—exp(—-ﬁ;X,') (-—;E) }dX (39)

To minimize the funclional, thengér =(, resulting in

BJ _ S~ alale _ gl

e = 3 (ABCE — BlCE) = g (40)
ex}

where
X N NI NN

(e} o — k

A ""fx,- eap( ﬂX)(Ni N Ni)dx (41)
X N; N; N; N

(e} - ] i E; k

B fx " ean ﬁX)( NN N Nk)dX (42)

C) = (C; Cij)T (43)

: 8c; 8C;n )"

(s} = |22 i+t

¢ [aT GT] (44)

Again, assuming a piecewise linear interpolation function to-
gether with a constant value for exp (—fX) over each element,
eqns. (41) and (42) reduce to

@ _ezp(=BX) (1 -1

a0 = 22l R (45)
I

B‘=>=§exp{—ﬁx‘=’)(§ é) “e)

where | is element length. Itis apparent that egn. (45) is identi-
calto eqn. (21). Also, the system of eqn. (40) is symmetric and
positive definite. By further observation of eqns. (45) and (46),
it is clear that the term exp {~fAX) is essentially a weighting
function. Recalling that # =VI/D, then as § increases, a stron-
ger influence is imposed from the weighting function. The
other observation is that § cannot be a too large unless the
element length | is sufficiently smali to keep the solution
stable.

6.4 Validation of the proposed method

The problem is investigated at a specific time (T = 1) with
changing maganitudes of Peclet number. Analytical solutions
are obtained by the method described previously. Excellent
agreement is achieved between the analytical solution and
the proposed method for a Peclet number of 0.1, illustrated in
Fig. 7 and Table V. The maximum error is estimated o be
0.023.
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Fig. 7: Transient Fluid Transport by Analytical Solution and MTB {a)

Table V: Concentration versus distance (b)

Distance Analyticai MTB
0.0 1.0000 1.0000
0.1 (.9388 0.9226
0.2 0.8712 0.8550
03 0.7964 07782
0.4 0.7138 0.6928
0.5 0.6225 0.5995
0.6 0.5216 0.4992
0.7 0.4101 0.3029
0.8 0.2868 0.2815
0.9 0.15086 0.1662
1.0 0.0000 0.0006

Further comparison of the MTB method with the analytical so-
jution is completed for Peclet numbers of 0.01, 0.05 and 0.5,
respectively. These results are fllustrated in Fig.8 and are rath-
er scattered. Slight overshoot occurs in the MTB for a Peclet
number 0.5. This situation would be further complicated for
greater § magnitudes.

Peclet number = Pn

OONCENTRAY fON (0/00)

e.o4 MTB({T=1)

eme =001 o
o -+ Pp =005
o.3 - - =035

Anazlytical {T=1}

e oo Pn=0.01
B, +s—r Pnz=0.05

oo Pp=0.5
80 1 T 1§ b T

Q.9 0.1 .2 G.d a.4 0.8 o.6 o.7 Q.0 0.3 1.0

DIITANCE (X/L)

Fig. 8: Transient Fluid Transport by Analytical Solution and MTB (b}

Conclusions

This paper discusses some classical problems of solving the
diffusion advection equation (DA equation) and presents spe-

Erddi und Kohle - Erdgas - Petrochemie vereinigt mit Branasioll-Chemie




cific methods used to concurrently damp oscillations and mi-
nimize numerical dispersion. The significant canclusions are
as follows.

{a) A method solving the steady state DA eguation is intro-
duced that modifies the asymmetric DA equation into a
symmetric positive definite one. Symmetry is achieved by
imbedding the first order spatial derivative of the eguation
into the second order derivative term. The variational formu-
lation is used to preserve symmetry in the resulting system
of equations. An efficient conjugate gradient method is ap-
plied to solve the symmetric system and can be readily ex-
tended to higher dimensional problems.

(b} For the steady state case, the proposed method is vali-
dated against three other methods: analytical soluticn, a
Galerkin finite element method and an upwind weighted
Galerkin method. The resuits show that the proposed me-
thod remains oscillation free and exhibits minimal numeri-
cal diffusion fora variety of Peciet numbers up to at least 10,
Retaining symmeiry in the equation minimizes numerical
oscillations.

{c} In terms of computational accuracy, the analyses presen-
ted in the preceding illustrate that increasing the element
density may not significantly improve the accuracy of the
estimation, excluding the Galerkin method.

{d) The proposed method is further extended to solve the tran-
sient DA equation. Validation indicates that the proposed
method performs well but remains restricted to certain
magnitudes of Peclet numbers.

(e) Amethod based on a modification of Guymon's method (33
is also introduced for solving the transient DA equation. The
method is shown to offerimproved accuracy over the tradi-
tional Galerkin method. Accuracy is further improved by us-
ing a higher order time stepping scheme such as the cen-

Heference

[1] 1 Giadwell, R. Wait: A Survey of Numerical Methods for Parlia Differential
Equations, Oxlord Univ. Press., 195-211 [1973}.

[2) H.S. Price, J.C. Cavendish, R.S. Varga: Numericat Methods of Higher Oe-
der Accuracy for Diffusion-Convection Equations, Soc. Pet. Eng. J., 243,
293-303 [1968).

{3} G.L. Guymon: A Finite Element Solution of the One-Dimensionat Difiu-
sion-Convection Equation, Water Resour. Res., §, 204-210 [1970).

[4} L. Chrislie, D.F. Griffiths, A.R. Mitchell, 0.C. Zienkiewicz: Finite Element
Methods for Secend order differentiai Equations with Significant First
Derivatives, int. J. Num. Meth. Engng., 10, 1389-1396 {1976).

[8] JL.C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz: An “Upwind” Finite ele-
menl Scheme for Two dimensional cenvective transport Equaticns, Int. J.
Num. Meth, £ngna., 1%, 131-143 [1877).

{6] M.F.N. Mohsen: Numerical Experiments Using "Adaptive’ Finite Element
Methods with Coligecation, Finite Element in Water Besour., Vermont,
U.8.A., 45-61 [1984].

{7} G.E Pinder, A. Shapiro: A New Collocation Method for the Salution of the
conveclion Dominated Transport Equation, Water Resour. Res., 15,
1177-1182 {1979].

{8] M.T. Van Genuchten, G.F. Pinder: Simulation of Two Dimensional Con-
taminant Transport with isoparametric Hermitian Finite efements, Waler
Resour. Res., 13, 451-458 $1977].

[8] H.M. Leismann, £.0. Frind: A Symmetric-Malrix time Integration Scheme
for the Efficient solulion of Advection-dispersion Problems, Waler Re-
sour. Res., 25, 1133-1138 [1989].

[10] M.T. Van Gennchten: U.S. Depl of Agric. Tech. Bull,, 1663, 144 [1982).

[1%] C.A.J. Fistcher: Computational Gaterkin Methods, Springer-Verlag, 260
(19843

[12] E.A Sudicky: The Laplace Transform Galerkin Technique: A Time continu-
ous Finite Element Theory and Application to Mass Transport in Ground-
water, Water Resour. Res,, 25, 1833-1846 [1989}.

Authors: Dr. b, Bai, PD. Dr. Ing. habil. A. Bouhroum, School of Petrateum and
Geological Engineering, The University of Oklahoma Norman, Ok
73019-0628.1.8.A ; Prol. D. Elsworth, Depariment of Mineral Engineering, The

tral difference or Crank-Nicolson method.

Pennsylvania State Universily, University Park, PA 16802, U.S.A.

Coal Specifications

The IEA Ceal Research, London, has
published a report (IEACR/52) titled
“Coal specifications ~ impact on power
station performance” As most of the
coal used to generaie electricity is con-
sumed as pulverised fuel, the focus of
the report is on performance in pulver-
ised fuel {PF) power station units. The
properties that are currently empioyed
as specifications for coal sejection are
reviewed together with their influence
on power station performance. Major
coal-related items in a power station are
considered in relation o those proper-
ties which affect their performance.
There is a review of‘tools’ being used for
coal selection and prediction of station
performance which includes an over-
view of the types of computer models
that are available and those that are be-
ing developed.

The principal coal properties that were
found to cause greatest concern to op-
eraiors included the ash, sulphur, mois-
ture and volatile matler contents, heat-
ing value and grindahility. Litile has
changed over the years in the way thatl
coal is assessed and selected for com-
bustion. Operalors continue to use tests

as specifications that were mostly devel-
oped for coal uses other than com-
bustion. Because the procurement spe-
cifications are based on tests which do
not relate wellto aciual praclice, thereis
still a need forexpensive large scale test
burns te coniirm suitability. With the ad-
vances that have been made in com-
puter technology, there is a growing
number of utilities that are adopting ‘ex-
pert'unit or ifdegrated models that aid in
the planning and operation of gener-
aling units. Others have shown scepti-
cism over the capability of devising a
truly representative model of a coal
combustion plant using the coal data
produced from current testing proce-
dures.

Specific requirements that have been
identified include the need to develop
internationally acceptabie methods of
defining coal characteristics so that
combustion plant performance can be
predicted more effectively. There is also
a need to establish economic parame-
ters which can serve to measure the el-
fects of coals on plant performance and
hence on the cost of electricity.
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Major coalfields of the world

At least 80% of world hard coal ouiput
will be produced from fewer than 20 ma-
jor coalfields during the next two dec-
ades. The IEA Coal Research publica-
tion (IEACR/51) analyses these coal-
fields from both a geological and eco-
nomic perspective. Introductory chap-
ters provide an overview of the econom-
ic and geological history of world hard
coal.The changing pattern of output and
demand over the past century, inciuding
the growth in international coal trade is
described briefly. Next considered are
the formation of coal deposits at various
stages in geological history and ihe re-
sultant differences in coal type, grade
and rank. Each major coalfield is analy-
sed against this background. The geolo-
gy, siructure and stratigraphy, rank and
quality, resources and areas of interest
of each coalfield are discussed, Indus-
try structure and performance over the
recent past are then considered, to-
gether with the transport infrastructure,
production costs and market poiential
associated with each coalfieid.
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