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Multiporosity/Multipermeability Approach to the Simulation
of Naturally Fractured Reservoirs
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This paper presents an array of deformation-dependent flow models of varions porosities and
permeabilities relevant to the characterization of naturally fractured reservoirs. A unified multiporos-
ity multipermeability formulation is proposed as a generalization of the porosity- or permeability-
oriented models of specific degree, Some new relationships are identified in the parametric investiga-
tion for both single-porosity and dual-porosity models. A formula is derived 10 express Skempton's
constant B by Biot’s coefficient H and relative compressibility ¢*. It is found that the recovery of the
original expression for Skempton's constant B is largely dependent on the choice of ¢7, representing
relative compressibility. The dual-porosity/dual-permeability model is evaluated through an alterna-
tive finite element approximation. The deformation-dependent fracture flow mechanism is introduced
where the rock matrix possesses Jow permeability and fracture flow is dominant. A preliminary study
of the reservoir simulation identifies the strong coupling between the fluid Aow and solid deformation.

1. INTRODUCTION

Fractured rock may be considered as a multiporous me-
dium [Aifantis, 1980] where fractures and intervening porous
blocks are the most obvious components of the dual-porosity
system. In a typical fractured reservoir, fractures provide
high-conductivity conduits amenable to rapid hydraulic
flows, whereas the high-porosity matrix blocks contain the
majority of the storage. Therefore the behavior of naturally
fractured reservoirs is radically different from that of a
conventional reservoir composed solely of intergranular
porosity and permeability.

Theoretical study of the dual-porosity system was initiated
by Barenblatt et al. [1960] by introducing the theory of
mixtores. In their mode], the fractured medium is repre-
sented by two completely overlapping continua, one repre-
senting the porous matrix and the other representing the
fractures (Figure 1), The dual-porosity model proposed by
Barenblatt et al. was further modified by Warren and Root
[1963] to represent the naturally fractured reservoir as an
idealized system formed by identical rectangular parallelepi-
peds, separated by an orthogonally fractured network.

For the purpose of accurately characterizing the pressure
buildup or depletion history of reservoirs, considerable
interest has been focused on developing realistic mecha-
nisms depicting the interporosity flow in naturally fractured
reservoirs. The focal point is to fit the transient transition
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curve where the important fluid interchange between frac-
tures and matrix blocks occurs. In general, interporosity
flow has been described by two mechanisms. The first is the
simple quasi-steady staie maodel proposed by Warren and
Root [1963], followed by the more sophisticated unsteady
state models of various versions [Kazemi, 1969; deSwaan-
0., 1976; Duguid and Lee, 1977; Kucuk and Sawyer, 1980;
Najurieta, 1980; Chen et al., 1985]). Some noticeable differ-
ences in terms of pressure distributions in the transition
period resuit from the two different mechanisms.

The transient flow and deformation behavior in a porous
medium may result from changes in either the fluid pressure
or total stress boundary conditions applied to the system. It
is the admissibility of changes in total stress within the
system (which may result from natural tectonic changes or
human activities) that describes the essence of coupled
deformation-dependent flow behavior within porous media
and sets it apart from decoupled diffusive (flow} systems,
Comprehensive coupling between stresses and pore pres-
sures was first rationalized by Bior [1941] and later adopted
in many applications to specific deformation flow systems
[Ghaboussi and Wilson, 1973; Zienkiewicz et al., 1977;
Simon et al., 1984; Lewis and Schrefler, 1987, Detournay
and Cheng, 1988]. In naturally fractured reservoirs where
the medium consists of discrete fractions of varying solid
compressibilities and permeabilities, a multiporosity/
multipermeability approach appears more appropriate.

It is important to correctly characterize the behavior of
naturally fractured reservoirs. For example, the exception-
ally high oil rate recovered in the initial stages of reservoir
production may lead to overestimating well production by
assuming a higher storage to exist than exists in reality. It
was assumed that the high matrix block storage would

1621



\

atrix

I

ig. 1. Fractured reservoir rock.
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continuously render the supply to the well through highly
permeable fracture channels. In fact, many reservoirs that
produce at high initial rates decline drastically after a short
period of time because the oil has been stored in the fracture
system (Figure 2). As Aguilera [1980] pointed out, it is
important to visualize that the storage capacity of naturally
fractured reservoirs varies extensively, depending on the
depree of fracturing in the formation and the value of the
primary porosity. In contrast to this scenario, Figure 3
illustrates a case where only a small percentage of the total
porosity is resident in the fractures. Averaging from the two
extremes, an ideal situation for oil production is depicted in
Figure 4 where about equal storage capacity exists in the
fractures and matrix blocks. In summary, it is not safe to say
that the storage capacity of a fractured system is neglipible
compared to the storage of the matrix,

Another important parameter for production is permeabil-
ity, a measure of the capacity of the medium to transmit fluid
which has a dimension of area. In general, fractures possess
substantially higher permeability than that of the matrix
itself, which is a crucial factor in a tight reservoir where
economical production is desired. However, the porous
media essentially collapse to be of an eguivalent single
permeability for a healed fracture system.

The critical impact of strata deformation such as reservoir
compaction in changing flow systems has been recognized in
many circumstances. A typical example is the surface sub-
sidence as a result of groundwater pumping or petroleum
production. Accurate prediction of subsidence and fluid
pressure control can be enhanced through using a deforma-
tion-dependent flow model coupled with a proper validation
via field measurement.

To provide the industry with more flexible tools in match-
ing the geological variations and to avoid an uarealistic
prediction of reservoir storage locations which may lead to
production failure, several conceptual deformation-
dependent flow models are proposed in the following. These
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Reservoir with all storage in fractures,

Fig. 2.
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Fig. 3. Reservoir with large storage in matrix,

are presented together with their respective governing equa-
tions based on a generalized multiporosity/multipermeability
principle. Following a discussion on parametric determina-
tion, the formulation of the deformation-dependent fow
system is focused on a dual-porosity/dual-permeability sce-
nario which appears to represent one of the traditional types
of naturally fractured reservoirs in view of petroleum pro-
duction. The important deformation effect on the fluid pres-
sure distribution is identified in two hypothetical case stud-
ies.

2. Conceprual MopELS OF VARIOUS POROSITIES
AND PERMEABILITIES

In the following, an array of deformation-dependent flow
models is either rewritten (models 1 and 3} or proposed
(models 2, 4, and 3) in concise tensor forms. In addition, a
general multiporosity/multipermeability formulation is given
based on mixture theory.

2.1.

The study of fluid flow in deformable, saturated porous
media as a coupled deformation-dependent flow system was
initiated with the work of Terzaghi [1943] in his one-
dimensional consolidation model. The Terzaghi theory was a
special case of a more general three-dimensional form by
Biot [1941]. In all the development that follows, the porous
medium is assumed to possess a continuous distribution of a
single type of void space satisfying a single permeability (as
shown in Figure 5), which may be termed as a single-
porosity/single-permeability mediam.

The general stress-strain relationship incorporating effec-
tive stress effects through pore pressures may be written as

Model 1: Single-Porosity/Single-Permeability
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Fig. 4. Reservoir with equal storage.
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1+ v ¢
Ey =g i~ g O'kkaij_g"ﬁpaﬁn (1)
where E is the elastic modulus, ris the Poisson ratio, ¢ris the
pressure ratio factor, H is the Biot constant, oy is total
stress, p is fluid pressure, 8; is the Kronecker delta, and €5
and oy are strain and stress tensors, respectively. In this
analysis, the Greek and Latin subscripts have the values of
1,2 and 1, 2, 3, respectively; a comma stands for differen-
tiation and summation is implied over the repeated Latin
subscripts.

The equilibrium eguation in the absence of self weight and
inertial effects may be given as

O-l'j.j ={ (2}
and the strain—displacement relation is defined as
E,'j"'—':%(lli'j'f‘ “j,i}v (3}

where u; are displacements. The equation governing a solid
body deformation is obtained through substitution of (1} and
the strain-displacement relation of (3) into the equilibrium
equation (2), to yield

Guj i+ (A + Gl + dp ;i = Q, {4)

where G is the shear modulus and A is a Lamé constant.
In the fluid phase, Darcy flow velocity, v;, can be ex-
pressed as

k

U T
18

P e (5)
where k is permeability and p is fluid dynamic viscosity. The
basic statement of flow continuity requires that the diver-
gence of the flow velocity be equal to the rate of fluid
accumulation per unit volume of space; therefore

v = dEg — d¥p. (6)

where ¢* is termed the relative compressibility. Substituting
(5) into {(6) gives the governing flow equation as

1
_:kp,kk= by — . )

Equations (4) and (7) constitute the governing equations
for the deformation-dependent behavior of a single-porosity/
single-permeability medium. In general, this model is applied
to a nonfractured reservoir with uniform porosity and per-
meability.
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Fig. 5. Single-porosity/single-permeability system.
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Fig. 6. Dual-porosity/single-permeability system.

2.2. Maodel 2: Dual-PorositylSingle-Permeability

For a fractured medium, it is generally recognized the
fractures add secondary porosity to the original porosity by
breaking the porous medium into blocks. The dual-porosity
conceptualization of a fractured medium considers the fluid
in fractures and the fuid in matrix blocks as separate and
overlapping continua. However, unlike the common as-
sumption for a dual-porosity medium where the fiuid flows
primarily through highly permeable fractures, the nonperco-
lating fractured system depicted in Figure 6 suggests an
equivalent single-permeability behavior in a medium with
distinctly different porosities. A fractured reservoir with
relatively low permeability but high storage {tight reservoir)
may be characterized by this dual-porosity/single-permeabil-
ity model. The governing equation of solid deformation may
be expressed as follows:

il

GH,'J}- + (/\ “ G)“k,fu' + 2 d)mpm.f = 0, (8)

m=1

where m = I and 2 represent fractures and matrix blocks,
respectively.
The governing equation for the fluid phase is

1
- ; kpm.kk = ‘i’mékk - ﬁbtnpm * f(AP}v 9)

where k is the equivalent single permeability, or a perme-
ability averaged from the total system, and £ corresponds to
a fluid transfer rate representing the intensity of flow be-
tween the fractures and matrix driven by the pressure
gradient, Ap. A positive sign indicates outflow from the
matrix, and a negative sign indicates inflow into the matrix.

The major difference between the dual-porosity/single-
permeability system and the previous single-porosity/single-
permeability system is that interporosity flow is permitted in
the former. Furthermore, no distinction between fracture
permeability and matrix permeability may be identified in the
dual-porosity/single-permeability system, which distin-
guishes it from the conventional dual-porosity/dual-
permeability system.
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Fig. 7. Triple-porosity/dual-permeability system.

2.3. Model 3: Dual-Porosity/Dual-Permeability

This is a commounly accepted naturally fractured reservoir
mode! in which the fracture and matrix phases are distinctly
different in both porosity and permeability. In formal lan-
guage, these media possess two degrees of porosity and
permeability. The model may be best represented by Figure
3 where high porosity/low permeability matrix and low
porosity/high permeability fractures are typical characteris-
tics of the medium,

in view of the governing equations, the model carries an
identical form in the solid phase as the dual-porosity/single-
permeability model {equation (8)). However, the equation
for the fluid phase differs:

1
_;km.pm.kk= DmErx — bmbmt £(Ap),  (10)
where &, is the permeability of phase m.

Under the assumption of low matrix permeability, a frac-
ture flow mechanism may be incorporated in the formula-
tion. The dual-poresity/dual-permeability model is suitable
for the simulation of a fractured reservoir with low-
permeability matrix blocks,

2.4. Model 4: Triple-Porosity/Dual-Permeability

For a severely fractured reservoir, however, a dual-
porosity model may not be appropriate even in the local
geometry. An immediate extension of the dual-porosity
conceptualization is to triple porosity. An example of a
triple-porosity model is where a dominant fracture system
intercepts a less pervasive and nested fracture system,
which in turn is set within a porous matrix.

The term “‘triple porosity” is not new in the literature.
Abdassah and Ershaghi [1986] considered a reservoir where
fractures have homogeneous properties throughout and in-
teract with two groups of separate matrix blocks that have
different permeabilities and porosities. It should be pointed
out, however, that the Abdassah and Ershaghi approach
could still be considered as a dual-porosity approach, par-
ticularly with a numerical technique by which local paramet-
ric adjustment may be easily achieved.

In this paper, a truly triple-porosity system or matrix-
fissure-crack system is proposed. For a triple-porosity/ duai-
permeability system, matrix pores are interwoven with non-
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percolating fissures, and they interact with open cracks
through fluid exchange among different phases (Figure 7).
The governing equation for the solid phase is given by

3
G“f-ﬁ + {‘)‘ + G)“k,ki + 2 qupm,l' =0,

m=1

(1)

where m = [, 2, and 3 are the subscripts for cracks, fissures
and matrix, respectively.

For the fluid phase, it is convenient to write out each
equation and the corresponding subscript separately, such as

1
L Kypiwe= & 165~ &0 = Era(p2—p1)
*&plpy—py. (1D
l . * .
~ kaapa gk = dakpy — &332 £ E0(py — pa)
= Ealps — pa), (13}
1 ) s
—y k2pagk = DaEpe — d303 = E31(p1 — P3)
* £y pa = pal (14)

where &, is the crack permeability, k3 is the averaged
permeability between the matrix and fissures, and £; is the
fluid transfer rate between phase [ and phase j. The inter-
porosity flow that results from pressure differentiation is
assumed between all three phases.

A severely fractured reservoir with moderate permeability
may be represented by a triple-porosity/dual-permeability
model.

2.3, Model 5: Triple-Porosity! Triple-Permeability

For a percoiating fissure system, the permeability is inde-
pendent for each phase, similar to porosity (Figure 8). The
governing equations for the solid phase are identical to {11).
For the fluid phase, the change is made soleily in the
permeability terms. Instead of using the averaged permeabil-
ity for the matrix and fissures, each phase / carries its
respective permeability k(i = 1, 2, 3},

Fractures {open) ﬁ“ Pares

Fig. 8. Triple-porosity/triple-permeability system.
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The triple-porosity/triple-permeability model is applicable
to a severely fractured reservoir with high permeability,

2.6. MultiporositylMultipermeability Model

By the definition of Aifantis’s multiporosity theory [Aifan-
tis, 1977, 1980], any media that exhibit finite discontinuities
in the porosity field are considered to possess a multiporos-
ity property. However, ne unified formulation based on the
multiporosity theory has ever been written. Following the
previous derivation, the formulation for a multiporosity/
multipermeability system is readily available.

In the solid phase, the effect of fluid pressure on the solid
deformation within each individual component may be su-
perposed to form

!
Gll,‘,jj“-“ (1\ + G)Ilk'k,-ﬂ" Z ¢mpm.i= 0,

m=1

(15)

where / is the number of distinct porosities of the porous
medium.

In the fluid phase, a separate equation must be written for
each component of distinct porosity or permeability. For
component 1,

t
1
T kipre= ¢ 1ég— ¢1p = 2 Ewplpi— P}

i=2

(16)
For component j,
1 I
e kpie = gy — Gt Z ko= py)-
g i= =D
a7

It may be readily demonstrated that the aforementioned
single-porosity, dual-porosity, and triple-porosity models
are special cases of the unified multiporosity/multipermeabil-
ity formulation expressed by {135, (18), and (17).

3. PARAMETRIC STUDY

A parametric sindy is important to illustrate the utility of
the multiporosity models identified in section 2. For conve-
nience, the discussion is focused on the study of single-
porosity and dual-porosity systems.

3.1. Single-Porosity Model

In general, Terzaghi's [1943] effective stress law is defined
as

o= oy~ pby, (18)
where of; is the effective stress tensor and o is the total
stress tensor. The two important parameters of ¢ in (4) and
¢* in (7) require definition. However, the validity of Terza-
ghi's effective stress remains questionable, in particular for
rock engineering, because primary assumptions are of in-
compressible fluid and grains. Where grain compressibility is
finite, a stress ratio term must be added.

In Bior's [1941] theory, the volumetric strain can be
written as

1625

1
8 E“K“ (19}

1 K
gTr (UI}')—EP r

where K is the effective modulus of the skeleton. For
isotropic stress conditions, § = (1/K)o®, where effective
stress o° may be redefined as ¢ = (1/3)}oy — ¢p, where
¢ is termed the pressure ratio factor and oy is the total
stress. This equation reduces to Terzaghi's theory only when
¢ is unity, Although ¢ may approach unity for compressible
rocks [Kranz er al., 1979; Walsh, 1981], the magnitude may
be determined from both the degree of rock fracturing and
solid bulk modulus. Geertsma [1957] and Skempton [1960]
proposed, on experimental grounds, that

=1 K
d)— K,’

203
where K, is the bulk modulus of grains. Nur and Byerlee
[1971] verified this relationship theoretically. It is only when
the effective compressibility of the dry aggregate is much
greater than the intrinsic compressibility of the solid grains
(K << K.} that the Terzaghi relationship of equation (18} is
valid.
In Biot's [1941] approach,

3 21+ G E a1
T31-20H 1-20H H'
where H is Biot's constant and can be expressed as
1 i |
e s | {22)

it may be noted that only when K << K, K = H, which
is often the case for soil, that Terzaghi's effective stress law
holds.

Itis a more controversial issue to define the parameter ¢*.
In a major part, this results from the dispute with regard to
the exact form of Terzaghi effective stress law, In Biot's
{1941] approach,

1 o

L —

23
R B (23)
where R is another Biot constant. if Terzaghi's effectiveness
stress law is followed, ¢* is most widely suggested to be
{Verruijt, 1969; Bear, 1972; Huyakorn and Pinder, 1983]

d)* = ..n..._ (24)

K,
where n is the porosity and K is the fluid bulk modulus.
If the compressibility of the solid grains is not negligible,
however, then [Liggerr and Lin, 1983]
o = n N 1-n
K K,
¥ we equate (23) and {25) and also note (21} and (22), then
R may be derived for Biot's theory as follows:

(25}

T-n 1 K\?
- e +—=l1=-=].
R K, K, K K,

(26)
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Fig. 9. Dual-porosity fractured medivm.

3.2. Dual-Porosity Model

The main characteristic of the dual-porosity model is to
distinguish between the fracture and intergranular flows. In
the general formulation of the dual-porosity model given
previously, the possibility exists for flow through both the
blocks and the fractures with a transfer function describing
the fluid exchange between the two continua.

The important parameters in the governing equations (3}
and (10} are d,,,, %y, ko, and £ Itis of interest to rationalize
these parameters on certain mechanical grounds,

Due to its equivalence with the pore pressure ratio factor
o [Nur and Byerlee, 1971], the fluid pressure ratio ¢, in the
matrix can be evaluated by (20).

Determination of the fracture fluid pressure ratio ¢
appears 1o be more difficult because of its nonlinear depen-
dence on the stress history. Robin {1973] suggested that

du,
b1=1-v,f8; ap » 27
where v, is the pore volume, 8, is the rock compressibility
in fractured media, and dv,/dp is the rate of change in pore
volume with applied hydrostatic pressure for a joint with no
pore fluid.

Based on an experimental study, Walish [1981] suggested
that ¢; varies between 0.5 and 1. In that work it was
determined that ¢, = 0.2 for joints with polished surfaces
and ¢, = 0.36 for a joint made from a tension fracture,

Kranz et al. [1979] expressed their results in a similar
manner, proposing that ¢; should be less than 1 for jointed
rock, and ¢, approximates 1 for whole rock. They pointed
out that the stress dependence of ¢, is a function of both
surface roughness and ambient pressure,

To determine ¢, and ¢, in this research, Suklie's [1969]
proposal is extended for dual-poresity media. As a first
approximation, the difference between the bulk modulus of
the fractured rock and that of the rock without fractures is
neglected. The volumetric strain can be expressed as

2
P

ik

3K K

m=i

(28)

- K}
- —nm)}z;;

where n,, is the porosity of phase m. Note that the volu-
metric strain, 9 = gy, yields

= | 1 K fe 1,2 29
f,bf“"‘ ( ni)K: L ( )
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In general, n, < n,; therefore ¢ < ¢,. It is readily
confirmed {Kranz et al., 1979; Walsh, 1981] that ¢ increases
with a decrease in fracturing.

Relative compressibility, ¢%,, may be expressed as

l—n, nn
P = ( +-——).
” K; Ky

The variable k,, in (10} represents the permeabilities of the
fractures and matrix for m = 1 and 2, respectively. To
evaluate fracture permeability k,, we assume an idealized,
regularly spaced, fracture system (Figure 9). If the fracture
opening is estimated either from direct measurements or
through pressure/fow relationships, then the fracture per-
meability in the direction parallel to each fracture set may be
calculated directly from parallel plate analogy [Snow, 1968;
Louis, 1969] as follows:

(30

b3

— 31
12s 61

k1=

where b is the fracture opening and s is the fracture spacing.
Fracture permeability may also be obtained from in situ
measurements such as pumping tests, provided that the flux
contribution from the matrix may be verified as minimal.

Matrix permeability, ks, may be estimated if the hydraulic
radius, d, of the capillaries or pores is known or can be
estimated. A suitable capillary equation can be used to
calculate the permeability [Bear, 1972] as

el
n-_? d-

Ky = e e
ST (1= ny)* 180

(32)
where n, is the matrix porosity, and 4 is the mean grain size
or hydraulic radius. As an alternative, pumping tests may be
conducted in the porous medium alone to yield values of the
primary permeability, &,.

it should be noted that the fracture and porous medium
permeabilities described previously are initial values. Since
fracture apertures and capillary diameters are influenced by
stress changes, the initial magnitudes of permeability will be
modified as the stress field varies.

The remaining term to be determined is £ in (10). On the
basis of dimensional analysis and the assumption of quasi-
steady fow conditions, Barenblait et al. [1960] defined that
the rate of fluid mass transfer from the porous matrix blocks
to the fractures is given as

£ = EolkaSD),

where £, is a leakage constant, &, is the matrix permeability,
and S, is the specific surface of the fractures, i.e., the
surface area of fractures per unit volume of the porous
medium. For three mutually orthogonal fracture sets, War-
ren and Root [1963] defined

(33)

60

§oSi=—, (34)
iy

3.3, Physical Parametric Identification

n Bior's [1941] Navier (displacement type)} formulation of
a deformation-dependent flow system, the governing equa-
tions were established without referring explicitly to the
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undrained and drained stages of loading, as considered in the
stress-based method proposed by Rice and Cleary [1976].

in the stress-based method, the governing équation of the
solid phase can be expressed as [Cleary, 1977)

v, v)
TRl o2 P

Guj g + — Up1; =0
i 1—2v kki B

(35)

where », and »are the undrained and drained Poisson ratios,
respectively; B is Skempton’s constant [{Skempton, 1954]
which is defined as the change in pore pressure per umit
change in confining pressure under undrained conditions.

The governing equation in the fluid phase may be written
as

Lo B [ 3 .
= p'“_BE(I-kvu) Tk~ P 36

To modify (36) into a form similar to (7), we have

Wy, ~v) ) v, —v) |
Bl r o2 M FE1 oy O
{3

- kP gk =
i

Due to identical unknowns in terms of the flnid phase in (7}
for the displacement-based method and {37) for the stress-
based method, the following relationships are readily ob-
tained;

_ 3(”11 e V) 18
¢ T BT a0 - 29) 8
. S .

¢ T BYE( + vy’ (39)

The pressure ratio factor ¢ may be modified from (21) by
substituting (22} 1o yield

_E 11
®=30 T2 \K K.

Comparing (38) with (40}, the Skempton constant may be

expressed as
9y, —») {1 1\
po w1 1Y
EQ+ vy \K K,

Noting (21}, and for the case K << K, (41) collapses to
{38) with ¢p = 1.

The relative compressibility ¢* may be determined by (24)
or (25). In addition, Geertsma [1957) suggested adding the
influence of the compressibility of solid skeleton (1/K}, that
is,

40

(40

- {42)

If Geertsma's interpretation of Biot's constant R is used,
however, ¢* can be expressed by Rice and Cleary {1976] as

(43)

1627

In (43), it appears that the partial compressibility of the solid
skeleton of porous media, due to the change in fluid pres-
sure, is additionally considered.

In any case, if ¢* is kept as a selective parameter, the
coefficient B can be derived from (39) as

9(V _ V} 12
Be | )
d*E(1 + v,)
Equating (41) and (44) with substitution of (22}, and further
letting

(44)

E

" SHe )

¢

undrained and drained Poisson ratios », and » may be
explicitly expressed by the other parameters:

v+ i
ks (46)

v=w,—g(l+v,), 4mn

it is understood from (45) that = 0; therefore v, = v. If
¢ = 0and v, = v, then ¢ = 0 and the fluid flow is fully
decoupled from the solid deformation. Since [Rice and
Cleary, 1976} 1/2 = v, = v, the following relation exists: 0 =
¢ = (1 — 21)/3. By substituting {46) into {44), Skempton’s
constant B may be represented by the following simple
expression:

1
“qu*'

B (48)
Skempton's constant B may be written out by substituting

(22 and ¢* in (24) or (25), or (42) or (43) into (48). For

example, substituting (43) and (22) into (48), gives

5 1 1l{s 1+n 1} 49)
== | e = mee || nnan + —_—
K KKy K, K
When K << K, which is often the case for soil,
B=11 nK )™ (50
- +
Ky

This is the identical form of B as proposed by Skempton
{1954]. ¥, however, (25) is used for ¢* in (48), one has

5= 1 1 n | —nl|™! 1)
CIK K|k K
For the case K, = K and K; = 1,
Ky
B =—=, 52
nk ¢

which appears the most simplified representation of B. This
is the case in Skempton’s theory where the compressibility
of the fluid is far greater than that of the soil structure. There
is no obvious constraint for B if {52) is used in contrast o
(50) of Skempton's theory. The characteristic of unbounded
B (not confined between 0 and 1) under certain circum-
stances was also reported by Elsworth and Bai [1592].
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TABLE la. Parameters for Case |
Layer kfl',u. km/p E v K,, 5 Kauie ny Hm
foor 088 x 10°% 022 %1075 [x10® 028 3x10® 10 5x107 005 020
3 0.44 x 107% 023 x 107 2x10° 020 6x105 3 8x 107 0.0 025
2 0.66 % 1074 033x107F 3x108 025 oxif 5 1x107 012 023
1 050 % 1072 073 x107% 2x10% 022 8x10® 2 1x107 008 0.5

Since Skempton's constant B was obtained from the
undrained test, from (7) in the initial undrained case,

¢
pr_"- ""g";’AEkk, (53)

or through conversion between the total strain and total
stress,

Ap = - Aoy 54
p 36K T ik (54)
With reference to Skempton [1954],
B
Ap = - 3" Aakk' (55)

Substituting & in (21} into (54), it is easily shown that B in
(35) gives the identical form as in (48). The generalization of
Skempton's constant B by (48) is a useful tool in the physical
identification of the deformation-dependent flow parameters.

4. Fmnite ELEMENT DMSCRETIZATION
or THE Duar-Porosity MODEL

A multiporosity medium of particular interest in reservoir
engineering is naturally fractured rock mass. The normal
assumption for the fractured medium is that it possesses two
degrees of porosity and two degrees of permeability, as seen
in the governing equations (8) and (10), where the fracture
geometry has been implicitly expressed. In the following, a

finite element formulation is presented while all key param-

eters defined previously are incorporated.
The effective stress law for a dual-porosity medium may
be expressed as

T5=05~ GmPmbi {56)
where m = 1 is a subscript for the fractures and m = 2 is a
subscript for the matrix, and ¢, is the pressure ratio factor
for phase m.

Applying the effective stress law enables the stress-strain

relationship to be written for a dual-porosity medium as

1

do = DI g + Z Cmd,,00m |

m=

57

where o and £ are vectors of stress and strain, respectively;
Pm is the fluid pressure for phase m, C is a compliance
matrix, I is an elasticity matrix, and m is a one-dimensional
vector. For two-dimensional problems, m™ = {1 1 0}
Invoking the principle of virtual work and applying the
incremental equilibrium to the total stress state results in

f BTdg dv — af = 0, (58)
v

where B is the strain displacement matrix, f is a vector of
applied boundary tractions, and the integration is completed
over the domain, V.

Substitution of (57) into (58} enables the governing finite
element discretization for the solid phase to be given as

K du+de_dF 59
T dt dt  dr’ (
where
K1~=f BY DB 4V, (60}
v
R= D, f B” DC m¢,,N 4V, (61
m=1JV
F=[ Nf 48, (62)
M)

where N is a vector of shape functions and § is the domain
surface on which surface traction f is applied.
Darcy's velocity can be defined as

TABLE 1b. Notation for Table la.
Parameter Term Unit Conversion
kgl fracture permeability  feet* pound ™! yr™1 6.15 % 1075 m* MN "t~}
Kol matrix permeability  feet* pound ™! yr™! 6.15 x 1075 m* MN"1 57!
E Young's modulus pounds per square foot (psf) 4788 Pa
v Poisson ratio
K, fracture stiffness psfifoot 157.1 Pa/m
3 fracture spacing feet 0.3048 m
Kauia fluid bulk modulus psf 47.88 Pa
ny fracture porosity

ny,, matrix porosity
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k
v=—— V{p+ y2), (63)

®
where k is the permeability, z is the elevation of the control
volume, and v is the unit weight of the fuid. The principle of
continuity of flow reguires that the divergence of the flow
velocity vector be equal to the rate of fluid accumulation per
unit volume of space. This must include the sum of the
change in the total volumetric strain, the change in the solid
grain volume, and the fluid volume change due to pressure
change. In addition, the volume change due to the fluid
transfer from the matrix to the fractures or vice versa must
also be included. Volume changes from all of these spurces
may be defined as

de ap
viv= mT¢"' oy d’tn '5}--—'- £(Ap),

at ©4)

where ¢%, is defined in (30) and Ap is the fluid pressure
difference between the fracture and pore phases.

Substituting (63) into (64) and invoking the Galerkin finite
element procedure yields

E L o +M v *A GZ 65
+ — _—= + 1
P dr dr Q*ap ©2)
where
1
E= ———f YN'KVN 4V (66a)
By
L=¢, f N’m’C DB dV =R7 (66b)
v
pumping
A cover load .
o o layer 1 .5
o s B
) B
= il
= =
8
[o]
ettt T T e o -
no flow boundary
; cover load
{:;} 1((:0}' TYYY Y O Y 9 b ' ‘ﬁ
layer |
40 130 -
layer 2
30 100 <
layer 3
21 70 .
12 40
0

0
G 30 50 70 90 120 150 180 220 260 {ft)
0 9152127 37 46 55 67 79 (m)

Fig. 10. Finite element layout for case study 1.
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Fig. il. Time-dependent pressure curves.
M=—-¢% | NINdV Q*=¢ | N'NdJV  (660)
V ‘.‘
{66d)

1
=— | YNTKVUN 4V,
vy

where £ has been defined by (33) and (34) and k is the
permeability matrix.

Equations {59) and (65) completely define the finite ele-
ment formulation of a dual-porosity problem. It is conve-
nient to express these equations in a matrix form as

o) (2 26 o) (o) e

In comparison with the sipgle-porosity formulation
[Ghaboussi and Wilson, 1973], it is readily verified that when
the fracture spacing implied in (57) is increased to infinity
and parameters ¢;, ¢}, and £ vanish, the dual-porosity
model collapses to the single-porosity model.

The continuous time in {67) may be approximated by an
implicit, finite difference time discretizing scheme:

K; R uV T (K7 R\ [u)’
L AE-+M/\p “lL Ef\p
wer) o)+ loeella)
+ + + (68)
AIGZ 0 ArQ*/\ap

5. Quasi-STEapy FLow INTERACTION BETWEEN
FRACTURES AND MATRIX BLOCKS

As mentioned previously, the important difference be-
tween a single-porosity model and a dual-porosity model
rests on the additional flow transfer mechanism in a dual-
porosity formulation. representing the fiuid interchange be-
tween the fracture and porous matrix phases as a result of
the pressure differentiation between the 1wo phases. Al-
though a more rigorous transient flow system can be em-
ployed, for simplicity, only a gquasi-steady flow system is
used here, Following a mechanism proposed by Barenblatt
et al. [1960] and simplified by Warren and Roor [1963], fluid
transfer rate may be evaluated by
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Fig. 12. Pressure versus distance at layer 3.

60 k-
E=——A4ap (69)
sTou
where k5 is the matrix permeability and Ap is the pressure
difference between the fracture phase and porous matrix,

6. FraCTURE FLOW AND STrRATA DEFORMATION

The heterogeneous porous medium containing porosity
within both fractures and pores may be idealized as a
dual-porosity medium as discussed previously. For the case
of a low-permeable rock and where the fracture flow domi-
nates, the behavior of the porous media essentially reduces
to that of an equivalent single-porosity formation. Neglect-
ing turbulent flow and assuming that the primary flow is
within the fracture network, the permeability of a set of
parallel fractures of spacing s is given by (31), which
expresses the permeability as a function of an initial fracture
aperture. Since the aperture of the individual fractures will
change with the solid body strain, the permeability of the
strata will therefore be sensitive to the strata deformation as
a result of petroleum production.

Assuming that the individual fractures are distinetly soft
with respect to the porous medium, the deformation-
modified permeability may be written as [Elsworth, 1989]

I
k= —— (b + sAg)?, (70)
125
where Ae is the body strain perpendicular to the fracture set.
When the compliance of the elastic matrix approaches that
of the fracture, the modulus of the matrix must be included
in the evaluation of the permeability enhancement. Total
displacements are the sum of the elastic displacements in the

EO 12 24 37 49 &l 73 ™
=208 —m— (20,1 e (=02 e (203
= o 14 - (e e tal.0
3
= 0.6
o4l
e [
p=3
2 0.9]

E -
o
a8 130 160 200 240
Distance from well {f}}
Fig. 13. Pressure versus distance at layer 2.
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«
>
3
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3

Prassure {p(t/p(t

0 20 80 120 160 200 240
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Fig. 14. Pressure versus distance at layer 1.

matrix and across the fracture (shear displacement and
dilation are neglected). As a result, the modified permeabil-
ity of a single fracture set that incorporates solid deformation
may be calculated using

k b31 A Kw+b«”
= 1+ - .
125 ATE T

A comparison between (31) and (71) indicates that the
effect of induced strains is controlled by the dimensionless
terms {K,b)/E and b/s. Permeability will not be influenced
when these terms are individually, or collectively, very
large.

n

7. MobDEL APPLICATION

In the past the deformation-dependent flow model was
rarely used in the reservoir simulation, due primarily to the
added complication of the coupled deformation flow system,
and due further to the difficulty in determining the multitude
of nonlinear parameters that describe the system. An at-
tempt is made in the following to apply the dual-porosity/
dual-permeability model described previously to two simple,
hypothetical case studies. The objective of this preliminary
investigation is to delineate the influence on the fluid pres-
sure distribution contributed by the change in external
loading configuration and deformation magnitudes. For gen-
erality, dimensionless analysis prevails. As a result, the
excess pressure and strain as well as their signs are pre-
sented in a relative fashion. For simplicity, a single fluid
component such as oil in the fractured reservoir is assumed.

Distance from well {ft}

1600 20 40 60 80 100 120 140 160 180 200 220 240 260
T T T T T T E] T T T ¥ T ‘ig
0L p=p/p(max,t=0.1) 43
120~ o —— ey AT
100 gg
Z 80 g B
o — 18 E
E 12
40 &
20 E, 6
S \ 0
0 6 12 18 24 30 37 43 42 53 61 67 73 79

{m)

Fig. 15. Pressure distribution at 1 = 0.1 year (case study 1).
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Fig. 16. Pressure distribution at r = 1 year (case study 1)

7.1. Case Study 1

A flat-lying reservoir is located at a depth of 6000 feet
(1825 m) and contains three layers distinguished by the
material properties listed in Table 1. The specific weight of
overburden is 2.67. A gravitational cover load of 1 x 10°
pounds per square foot (47.88 MPa) is assumed to act on the
top of the reservoir. The oil-saturated reservoir (all three
layers) is being produced at a constant rate of 500 feet? per
day (1.64 x 10~% m?¥/s) through a fully penetrating well. It is
assumed that no gas mixture is found in the oil, and no water
drive mechanism is to be considered. No-flow conditions are
assumed, both at the lateral boundary and at a distance of 70
feet (21.3 m) from the bottom layer of the reservoir. The oil
flows outward from the well under initial fluid pressure.

As a result of symmetry, only one half of the reservoir in
the lateral direction needs to be simulated in the finite
element model (Figure 10}, The specific flow rate is desig-
nated at the nodes along the centerline of the reservoir, as an
approximation of a planar source. In expectation of more
drarnatic changes in the pressure and deformation near the
well bore, a denser mesh is placed in the vicinity of the well.
Soft underburden is assumed beneath the reservoir (Table
1). The porous media are represented by a dual-porosity
system where an orthogonal fracture network of regular
spacing intervenes between adjacent matrix blocks.

The dimensionless pressure depletion curves are shown in
Figure 11 for the locations of (10 feet, 80 feet), (10 feet, 110
feet) and (10 feet, 140 feet) (3 m, 24.4 m), {3 m, 33.5 m) and
(3 m, 42.7 m)), respectively, For layer 3, the pressure
declines faster initially and more slowly at the later stage.

e=efe(max,t=0.1)
Distance from well {ft)
2 42 62 82102 122 142 162 182 ‘202 222

152
132

1 7 13

19 25 31 37 43 49 55 6268
{m}

Fig. 17. Strain distribution at ¢ = 0.1 year (case study 1),
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T 13 19 25 31 37 43 49 55 62 €8
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Fig. 18. Strain distribution at r = 1 year (case study 1)

‘The opposite is true for layer 2. For each individual layer,
the time-dependent pressure-distance curves are piven in
Figures 12-14. The fastest decline of fluid pressure is ob-
served in layer 3, in contrast to the slowest observed in layer
1, indicating the significant influence of reservoir compres-
sion and higher compliance in the underburden.

The pressure contours at t = 0.1 year and 7 = 1 year are
shown in Figures 15 and 16. The higher pressure magnitudes
are associated with the location of the well and occur in the
vicinity of the interface between the reservoir and the
underburden. In view of the change in pressure magnitudes,
the time period within 1 year after the initial oil production is
identified as the most prominent. Figures 17 and 18 are the
strain distribution at ¢ = (.1 year and + = ] year,
respectively. In particular, at a later stage, higher strain
magnitudes occur in the underburden region.

In 2 dual-porosity or fractured porous medium, the period
of transient interactive flow between the fracture phase and
matrix phase can be relatively short. Figure 19 represents
the time-dependent pressure variation in the fracture phase
and matrix phase at different periods. It is seen that the
interactive flow occurs before ¢ = 0.2 year. The fluid
interchange between the fracture phase and the matrix phase
slows the rate of fluid transport in a fractured porous
formation.

7.2. Case Study 2

The previous case represents the pressure variation in a
cross-sectional view of the reservoir subjected to the cover
load. In an areal model, a reservoir may be subjected to
excessive tectonic stress as indicated in Figure 20, which

— fracture
= 08 .
pocs At the point (120 f1, 120 £t}
é‘/ 0.61 or (37 m 37 m)
a.
=
g
F matrix
=
& 0.2
0 ]
0.0} 6.1 1 10 100

Time (year)

Fig. 19. Pressure depletion in fracture and matrix.
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Fig. 20. Finite element layout for case study 2.

also shows the finite element mesh layout in a simulated
half-reservoir section with five production wells. The bound-
ary stress acting on the left border of the reservoir is
instantaneously applied. The material constants of the res-
ervoir are identical to those of layer 2 given in Table 1.
Figure 21 represents the changes of the relative pressure
distribution after 0.1 years of production. No obvious pres-
sure variation during this period is observed. I relatively
large magnitudes of stress are applied (Figure 22}, however,
the pressure distribution will be substantially different from
the previous cases due to a more significant deformation
effect. The greater variation of the pressure is demonstrated
at the locations close to the stressed boundaries.

8. ConNcLusioNS

This paper has systematically introduced several concep-
tual deformation-dependent flow models utilizing concepts
of multiporosity and multipermeability that may be suitable
for the characterization of a variety of formation types. A
unified multiporosity/multipermeability formulation has
been proposed, which represents a generalization of the
porosity or permeability-oriented models of various degrees.
Deviating from the traditional porosity-oriented model con-
ceptualization, permeability stands out as one of the critical
factors in rationalizing reservoir behavior. The practical
implication of these models is aimed at providing additional
and more flexibie tools in matching the geological variation
inherent in real reservoirs.

Ia a parametric study, some key constants are identified
and are expressed in terms of experimentally measurable
coefficients. A simple relationship has been derived to ex-
press Skempton's constant B using only Biot's constant H
and relative compressibility ¢*. This relationship signifies a
successful parametric communication between the displace-
ment-based [Bior, 1941] and the stress-based [Rice and
Cleary, 1976] methods in the description of deformation-
dependent flow system.

An alternative finite element approximation to the dual-
porosity/dual-permeability formulation is introduced. Al-
though the formulation is based on the theory of mixtures

(m)
1200 0 610 8i4 1219 1524 1829 366
p= p/pﬁnaxtmﬂl)
800 S 244
2 £
= 400 Z 20 122
0 AEh : — ﬁ?% — ) i 9
v} 1000 2000 3000 4000 3000 6000
(ft)
Fig. 21. Pressure distribution at ¢+ = 0.1 year (case study 2).
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p=p/p(max,t=0.1)  (m)
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8 1000 2060 3000
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Fig. 22. Pressure distribution at ¢ = 0.1 year (case study 2) for
relatively large magnitudes of stress,

4000 5000 6040

where the fracture phase and porous matrix phase are
represented by two overlapping continua, the deformation-
dependent fracture flow mechanisms is readily coupled
where the rock matrix possesses low permeability and flow
is dominant in the fractures.

A preliminary study of reservoir simuiation using the
theory of deformation-dependent flow identifies the strong
coupling between fluid fiow and solid deformation. Variation
in material constitutive properties may result in a different
change in the pressure and strain profiles. Neglecting an
important factor, such as strata deformation, may therefore
introduce a significant error in the reservoir analysis.
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