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As special cuses of a multi-porosity/multi-permeability formulation hased on
the mizture theory, an array of deformation-dependent flow models of var-
ious porosities and permeabilities relevant to the characterization of natu-
rally fractured reservoirs is presented. Some key relationships are identified
in the parametric investigation. A finite element discretization is developed
for the multi-porosity/multi-permeability media. A case study 15 focused on
a reservoir simulation using a dual-porosity/dual-permeability model. The
preliminary study identifies the strong coupling between Auid flow and selid
deformations. The effect of this coupling is also controlled by the constitu-
tive properties of the formation,

INTRODUCTION

For the purpose of accurately characterizing the pres-
sure buildup or depletion history of reservoirs, consid-
erable interest has been focused on developing realistic
mechanisms depicting the interporosity flow in natu-
rally fractured reservoirs {1,2,3,4,5]. However, most
cited models do not explicitly cover the effect of solid
deformation on the change of fluid pressure. It is the
admissibility of changes in total stress within the sys-
temn that describes the essence of coupled deformation-
dependent flow behavior within porous media and
sets it apart from decoupled diffusive (flow) systems.
Comprehensive coupling between stresses and pore
pressures was first rationalized by Biot [6] and later
adopted in many applications to specific deformation
flow systems [7,8,9,10,11].

It is important to correctly characterize the behav-
ior of naturally fractured reservoirs. For example, the
exceptionally high oil rate recovery in the initial stages
of reservoir production may lead to overestimate well
production by assuming a higher storage to exist than
reality. It was assumed that the high matrix block
storage would continuously render the supply to the
well through highly permeable fracture channels. In
fact, many reservoirs that produce at high initial rates
decline drastically after a short period of time because
the oil has been stored in the fracture system (Fig. 1).
As Aguilera [12] pointed out, it is important to visu-
alize that the storage capacity of naturally fractured
reservoirs varies extensively, depending on the degree
of fracturing in the formation and the value of the pri-
mary porosity. Different from this scenario, Fig. 2
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illustrates a case where only a small percentage of the
total porosity is resident in the fractures. Averaging
from the two extremes, an ideal situation for oil pro-
duction is depicted in Fig. 3 where about equal stor-
age capacity exists in the fractures and matrix blocks.
Therefore, it is not safe to say that the storage capacity
of a fractured system is negligible compared to the stor-
age of the matrix. In more general cases, however, it is
a fair assumption that in typical fractured reservoirs,
fractures provide high-conductivity conduits amenable
to rapid hydraulic flows; whereas, the high-porosity
matrix blocks contain the majority of the storage. In
any case, the behavior of naturally fractured reservoirs
is radically different from that of a conventional reser-
voir comprised solely of intergranular porosity and per-
meability.

In naturally fractured reservoirs, where the medium
consists of discrete fractions of varying solid compress-
ibilities and permeabilities, a muiti-porosity/multi-
permeability approach appears more appropriate, It is
well-known in continuum theory of mixtures that the
mixture may be viewed as a superposition of a number
of single continua, each following its own motion. In
addition, at any time, each position in the mixture is
occupied simultaneously by several different particles,
each possessing particular constituents. The theory of
mixture was originally developed as a thermodynamic
framework to describe thermomechanical behaviors of
materials consisting of more than one constituent [13].
The theory was extended to fluid flow in porous media
which was viewed as a bi-substance [14]. To ratio-
nalize the behaviors of a multiple substance such as a
fractured porous medium, Aifantis [15,16] proposed a
muiti-porosity theory based on the theory of mixture,
declaring that any media that exhibit finite disconti-
nuities in the porosity field are considered to possess a
multi-porosity property.
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reservoir with uniform porosity and permeability.

pore

Fig. 4. Single-porosity fsingle-permeability system

Dual-porosity/single-permeability

For a fractured medium, it is generally recognized
that the fractures add secondary porosity to the orig-
inal porosity by breaking the porous medium into
blocks. The dual-porosity conceptualization of a frac-
tured medium considers the fluid in fractures and the
fluid in matrix blocks as separate and overlapping con-
tinua. However, unlike the common assumption for a
dual-porosity medium where the fluid flows primarily
through highly permeable fractures, the nonpercolat-
ing fractured system depicted in Fig. 5 suggests an
equivalent single-permeability behavior in a medium
with distinctly different porosities. A fractured reser-
voir with relatively low permeability but high storage
{tight reservoir) may be characterized by this dual-
porosity /single-permeability model. The governing
equations of solid deformation may be expressed as
follows

Guiji + A+ Chuapi + ) dmbmi =0, (8)

me=1

where m=1 and 2 represent fractures and matrix
blocks, respectively. The governing equation for the
fluid phaselis

- ;kpm.kk = Gmérr = P pm £ E(AP),  (9)

where & is the equivalent single permeability, or a per-
meability averaged over the total system, and £ corre-
sponds to a fluid transfer rate representing the inten-
sity of flow between the fractures and matrix driven
by the pressure gradient, Ap. A positive sign indicates
outflow from the matrix and a negative sign indicates

inflow into the matrix.
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Fig. 6. Dual-porosity/single-permeability system

Fraetures (healed)
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The major difference between the dual-porosity
single-permeability system and the previous single-
porosity fsingle-permeability system is that both inter-
porosity flows are permitted in the former. No distinc-
tion between fracture and matrix permeabilities may
be identified, which distinguishes it from the conven-
tional dual-porosity /dual-permeability system.

Dual-porosity/dual-permeability
This is a typical naturally-fractured reservoir model
in which the fracture and matrix phases are distinctly

different in both porosity and permeability. Specifi-
cally, high porosity/ low permeability matrix and low
porosity /high permeability fractures are main charac-
teristics of the medium. In an idealized model of dual-
porosity/dual-permeability the pattern shown in Fig.
6 is frequently used.

In view of the governing equations, the model car-
ries an identical form in the solid phase as the dual-
porosity /single-permeability model.  However, the
equation for the fluid phase is different, i.e.,

1 R . -
- ;kmpm,kk = dmépr — G Pm £ E(AD), (10)

where k., is the permeability of phase m.
pore block

fracture

Pig. 6. Dual-poresity fractured medium

Under the assumption of low matrix permeability,
a fracture flow mechanism may be incorporated in
the formulation. The dual-porosity/dual-permeability
model is suitable for the simulation of the fractured
reserveir with low-permeability matrix blocks.

Triple-porosity/dual-permeability

For severely fractured reservoirs, however, a dual-
porosity model may not be appropriate, even when
considering local geometry. An immediate extension of
the dual porosity concepiualization is to triple poros-
ity. An example of a triple-parosity model is where
a dominant fracture system intercepts a less pervasive
and nested fracture system, which in turn is set within
a porous matrix.

In this paper, a triple-porosity system or matrix-
fissure-crack system is proposed. For a triple-
porosity /dual-permeability system, matrix pores are
interwoven with nonpercolating fissures, and they in-
teract with open cracks through fluid exchange among
different phases {(Fig. 7). The governing equations for
the solid phase are given by

3
Gu;j; + (A + Ghug i + Z PmPm,i = 0, (11)

m=1

where m=1, 2, and 3 are the subscripts for cracks,
fissures and matrix, respectively.

Froctures {healed)
Pores

Fig. 7. Triple-porosity /dual-permeability system

For the fluid phase, it is convenient to write out each
equation and the corresponding subscript separately
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It is understood from equation (21) that ¢ > 0; there-
fore, vy > v. If ¥ = 0 and », = v, then ¢ = 0 and
the fluid flow is fully decoupled from the solid defor-
mations. Since [21] 3 > vy > v, the following relation
exists 0 < 1p < =2

By back-substituting equation (22), Skempton’s
constant B may be represented by a simple expression,
extended for a multi-porosity medium,

1.1 1
T E TR

by = Vo= by

— {1+ wy). (22)

(23)

Depending on the specific circurnstances, ¢, may be
selected from equations (16) or (17).

FINITE ELEMENT MULTI-POROSITY
MODEL

For the general representation of the multi-
porosity/multi-permeability model proposed previ-
ously, the finite element approximation technique is
chosen. Applying the effective stress law enables the
stress-strain relationship to be written for a multi-
porosity medium as

I
dg = D{(fc + ZG $mOpm), (24)

where [ is the number of distinct porosity dimensions,
¢ and ¢ are the vecters of stress and strain, respec-
tively; pm is the fluid pressure for phase m, C is
a compliance matrix, D is an elasticity matrix and
m is a one-dimensional vector. For 3-D problems,
mT={111000}.

Invoking the principle of virtual work and applying
the incremental equilibrium to the total stress state,
and substituting equation {24) into the general equi-
libriuvm equations, enables the governing finite element
discretization for the solid phase to be given as

du dp dF

Kr— +R—=—, {25)
where
{ L’Tzfv__&T_Q_ﬁdV F = [, NfdS, (26)
R=%! _. [, BTDCmén.NdV,

where B is the strain-displacement matrix, f is a vec-
tor of applied boundary tractions, V is the integration
domain, N is a vector of shape functions and S is the
surface domain.

In the fluid phase, the rate of fluid accumulation per
unit volume of space may be defined as

Uy = T¢m - = b aﬁ( 1)"‘Z§m(Apm}

=1

(27)
where Ap is the fluid pressure difference between two
phases. Substituting Parcy’s velocity into equation
{27) and invoking the Galerkin finite element proce-
dure yield

u dp .
Ep+ls+M—=QAp+GZ, (28)
where
E=-1[,VNTEVNGV,
L=¢n f NTmTC DBAV = BT
M= ¢, V_’yNdV G=1[, VNTEVNGV,

Q = Shoibm fy NNV
(29)
where k is the permeability matrix, and Z is the vector
of elevation control volume. Equations (25) and (28)
completely define the finite element formulation of a
multi-porosity problem,

CASE STUDY

An attempt is made in the following to apply the
dual-porosity/dual-permeability model, described pre-
vicusly, to a simple, hypothetical case study. The ob-
jective of this preliminary investigation is to delineate
the influence of the changes in formation properties
and deformation magnitudes on the transient change of
fiuid pressure distribution. For generality, dimension-
less analysis prevails. For simplicity, a quasi-steady
flow interaction between fracture and matrix block
proposed by Warren and Root (1963) is used.

A flat-lying reservoir is located at a depth of 457
m {1500 feet) and contains three layers distinguished
by material properties listed in Table 1 for the case
with stiffer rock of layer 3 (hard layer 3). The elastic
modulus for the case of softer rock of layer 3 (soft layer
3) is 10% of the value shown in Table 1. The specific
weight of overburden is 2.5. A gravitational cover load
is assumed %o act on the top of the reserveir. The
oil-saturated reservoir is being produced at a constant
rate of 1.64 x 10™%m%/sec (500 ft* per day) through
a horizontal well situated in the cross-sectional center
of the reservoir. It is assumed that no gas mixture is
found in the oil, and no water-drive mechanism needs
to be considered. No flow conditions are assumed, both
at the lateral boundary as well as at the bottom layer
of the reservoir. As a result of symmetry, only one-
half of the reservoir in the lateral direction needs to be
simulated in the finite element model (Fig. 9).

The normalized fluid pressure (with respect to the
maximum pressure at t=0.01 day) depletion curves at
the well are shown in Fig. 10. In general, the pressure
declines faster between 0.01 and 0.1 day, and slower
afterwards. The pressure magnitude is smaller and
declines faster for the case of soft layer 3. The cross-
sectional fluid pressure distributions for both hard and
soft layer 3 cases at t=0.01 day are illustrated in Figs.
11 and 12, respectively. It is of interest to note that
the pressure variation is more localized with smaller
magnitudes for the case of soft layer 3. This scenario
represents a weaker modification of fluid pressure due
to larger compliance of the reservoir formation. The
fluid pressure profiles at various distances from the well
and at different times are given in Figs. 13 and 14, For
both hard and soft layer 3 cases, the pressure declines
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