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Two finite element hased methods are developed to idensify the spatial distribution of parameters that
characterize contaminant transport in two-dimensional irrotational potential flow in the regions over
which a concentration front has passed. The required input data are observations of the steady head
or pressure distribution and the transient mass concentration distribution of the contaminant, together
with a few transmissivity observations. To obrain the distribution of velocity, the transmissivity is first
determined by inverting the gronndwater flow equation. The velocity components are then computed
on the basis of Darey’s law, assuming the porosity and thickness of the aquifer are known. The
computed velocity components are used for estimating tknown aquifer dispersivities in two-dimen-
sional transient groundwater transport. In order to aveid the difficulty that often occurs in direct
solution an integration-based method is presented. This method performs well in both noise free and
relatively high noise level environments. In addition, a method 10 evaluate the additiong! parameters
of dispersivity and velocity components is presented for the cases where the head or pressure distri-
bution is not available. The equations for the methods are derived for cases in which the dispersivity
varies with position, althongh the methods have not been rested for spatially varving dispersivities in
the two-dimensional case.
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Introduction

The threat of contaminants to groundwater supplies
underscores the importance of understanding the pro-
cesses of migration. The parameters of longitudinal and
transverse dispersivity for probiems controlled by hy-
drodynamic dispersion are desired from the inverse
analysis. Dispersivity values obtained from tests on
small samples can be viewed as representing a property
of the medium but at a scale of insufficient size for
general use in prediction of dispersion in the field. In
comparison with the multitude of field hydraulic con-
ductivity and transmissivity tests that have been con-
ducted in geologic materials, only sparse dispersivity
tests are reported. Numerical methods have been used
to obtain parameters based on the dual measurements
of head and contaminant concentration. Considerable
work has been completed in this area. Strecker and
Chu' developed an optimization procedure based on
the United States Geological Survey-Method of Char-
acteristics Model (USGS-MOC) for two-dimensional
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problems. The examples illustrated that the proposed
algorithm could identify transmissivity and dispersivity
accurately under ideal situations. Hafner and Schwan
proposed a one-dimensional simulation scheme ori-
ented along a flow path for steady-state groundwater
flow.? They used a minimization procedure based on
the steepest descent algorithm and discussed unigue-
ness and sensitivity of the solutions. Knopman and
Voss analyzed the behavior of sensitivities, using a
one-dimensional form of the advection-dispersion
equation.® Their analysis showed that physical param-
eters can be determined more accurately at points in
space and time with a high sensitivity to these param-
eters. The sensitivity to the dispersion coefficient is
usually at least an order of magnitude less than that of
velocity. The time and space interval over which an
observation point is sensitive to a given parameter de-
pends on the actual values of the parameters in the
underlying physical system. Knopman and Voss? tested
a nonlinear regression model® of solute transport in a
one-dimensional analysis. The results illustrated that
the regression models consistently converged to the
correct parameters when the initial sets of parameter
values substantially deviated from the correct param-
eters.

Umari et al. formulated a two-dimensional problem
of transient groundwater transport from given obser-
vations as a general nonkinear problem using the con-
cept of quasi-linearization.® The finite element method
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was used in conjunction with the finite difference method
to discretize the governing differential equation (as
constraints}. The proposed algorithm was shown to be
fast, stable, and accurate. Wagner and Gorelick dem-
onstrated the utility of a nonlinear multiple-regression
methodology for estimating parameters of contaminant
transport.” The relative value of spatial data versus
temporal data was investigated for estimation of ve-
locity, dispersion coefficient, effective porosity, first-
order decay rate, and zero-order production. The re-
sults showed that the use of spatial data gave estimates
that were two to three times more reliable than those
based on temporal data for all parameters except ve-
locity.

However, all these previous studies describe pro-
cedures to determine an average value of dispersion
coefficient representative of the region of interest. In
addition, an indirect approach to determining the pa-
rameters required in flow and transport models, by
adjusting the values of the parameters until the cal-
culated solution matches observations, is often used.
This is not the approach adopted here. Instead the
following presents a finite element discretization of
parameters, as well as the head and concentration, and
then the finite element flow and transport equations
are solved for the nodal values of parameters, taking
the head and concentration distributions from obser-
vations. This is different from the normal use of the
finite element method to solve for the head and con-
centration with given values of the parameters. In the
case of sparse measwrements, missing observations can
be interpoiated by an interpolation method, such as
Kriging. The reduction of noise in observation and
errors introduced in the interpolation is mentioned in
another paper.®

In the following the differential eguations for
groundwater flow and transport are first introduced for
forward solution. These equations are then cast in fi-
nite element form for direct inverse solution of prob-
lems with high dispersivity, and we use an integration
method for problems with tow dispersivity. To dem-
onstrate the methods described in this paper, a one-
dimensional example is finally presented.

Differential equations

Groundwater flow

Basic assumptions for the one- or two-dimensional
problems of groundwater flow considered in the fol-
lowing are that the aquifer is horizontal, inhomoge-
neous from point to point, and continuous in the region.
Only confined problems are considered where the
transmissivity is directionally isotropic. The governing
equation for a two-dimensional groundwater flow sys-
tem under the above constraints was described by Hu-
yakorn and Pinder” and can be written as

J af hieg
(T ’) = S 0. ] 80, — xu) + 52

ax, \ Pox, = " ot

(b

where « and 3 are the summation convention index (I
or 2 and x, and x. are coordinates, respectively, II
represents the product, m,. is the number of weils, and
the solution of a two-dimensional equation must satisfy
the following conditions:

.,\'l,.\'zinR (2)

XX in R‘r (3)
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ah .
Top—(xpx,Dng = (e, XL, inRy
6.\‘,3
(4

where A(x;,x,,#} is the head at point (x,.x2), T,z is the
transmissivity tensor at (x;,x2), S is storage coefficient,
Q.. is flow rate at a well, R is the flow region, R; and
Ry are the boundaries of the aquifer, n, is the com-
ponent of the unit normal vector, hq, 7, 1y are spec-
ified functions, and x;. and 1., are the coordinate
vectors of a well. Here, 8(x,} is the Dirac delta func-
tion.

Groundwater transport

A compact general equation for single mass con-
centration is the following”:

d ac d d
X, (D"ﬁ e}.\'ﬂ) 9, (Vs at]\rC )
where £, is the retardation coefficient, ¢ is defined as
contaminant concentration, nu, is porosity of the me-
dium, V. is velocity in the x, direction, ¢,. is concen-
tration at the well, D,g is the hydrodynamic dispersion
tensor, and

_ _Tudh
" bn,, dx;

(6)

where & = | and 2 and 4 is a nonsummation index. In
the absence of radioactive decay and desorption in a
solution devoid of reactions, &, = 1, and with point
sources at Xy, X (w = 1,2, ..., m,) we have the
following equation:

] dc d
= (Dupy—) = - (cVa
axﬂ( # c?:cﬂ) AW (cVa)

I my a
o . ekt 6-—1:: = Xaw +—‘_kr 7
bnpgl 0..(1) ()I} (Yo = Xaw) + 5 kec (1)
where b is thickness of the aquifer. The solution for
concentration in equation (7) has to satisfy the follow-
ing conditions:

e{x1,%2,0) = colx:,xa2) x,x;inR (8)
c{x),x9,0) = oy{x),x2,0) XX in Ry )]
de
- Duﬁ WEM" (.1'[ ?x?.a””n + v.\“,(xl ﬁxl}”u
BIB

XX in R”z (10)

where ¢q, ¢, ¢y are specified functions, n, is defined
as before, and Ry; and R,y are boundaries. According
to Bear,™ for an isotropic porous medium, D, can be

= cplXXa.f)
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expressed as

V.V
Dap = arVéug + (e, ~ ar) = £ (11)
and
=VVI ¥ V2, (12)

where «; and o7 are longitudinal and transverse dis-
persivities of the porous medium, respectively.

Forward solution for contaminant transport

The finite element method is used for this problem,
since it enables irregular boundary conditions to be
readily accommeodated. Therefore the continuous vari-
ables in this problem can be approximated as the fol-
lowing:

h(xy,xa,0) = @00 x2)0(1) (13)
T(xyx2) = i, x)7T; (14)
Ve, (102} = dilx,x) Vo, (1) a=1712 (15)
clx.x,0) = Plxy,xn)el) (16)
ap(x;,x) = ¢ix oy (17
artx,xa) = dilxalan (18}

where ®;(x,,x2) and ¢;{x,,x5} are shape functions ap-
plied to various variables and need not necessarily be
the same, such as in the use of subparametric or su-
perparametric elements.!! In particular, we use ®;(x;,x2)
for variables that involve the first derivative and ¢;(x;,x3)
for variables that involve the second derivative in dif-
ferential equations (1) and (7).

When head distributions at successive time steps
are available, transmissivities can be obtained by solv-
ing equation (1) for the nonsteady problem, using equa-
tions {13} and (14).51%13 Then the velocity components
can be solved directly from equation (6) by using the
computed transmissivities and observations of heads
at any time level of interest.

Substituting equation (16) into equation (7) and us-
ing a weighting function w; = ;. then, we can trans-
form the system of equations into the form,

AC"+ H . Vc.n"?' 172

= Gue + ge — Blc"t ~ c)/AL (19)

where A is a diffusive matrix, g. is a vector of pre-
scribed mass fluxes, B is a matrix representing element
volumes, and

b, a‘b
Ay fDaﬁar 6\3 (20)
Qi = f GicpndRyy n

Ry

_[Q.c.  ifwellatnode (xy;,x2)
vl = if no well at node (x,;,x2;)
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By~ [ ®@;dR (23)
R

and V is a coefficient matrix representing the advective
components in the transport equation as

a b,
v, fvr,a 92 . dR (24)

Therefore solution for the steady-state condition can
be written as

A-Vice=gq (25)

where g, = ¢,.. + g.. For nonsteady problems, finite
differences in timeé can be used where the Crank-
Nicolson method gives a simple and reliable way to
evaluate the matrices as

Eiert!=gert + e — e (26)
where
2
Fi=A-V-18 @7
2
Fr=A-YV+<B (28)

and g7 and ¢/ are contaminant discharge vectors at
time steps # and n + 1, respectively. By evaluating
the matrix relationship of equation (26) the contami-
nant concentration vector at time stepn + 1, ¢**' can
be determined.

Direct solution for parameter estimation of
dispersion coefficient

Assuming the transmissivity distribution to have been
determined from equation (1) by the finite element
method,* !> we can define the velocity components
for a two-dimensional system by equation (15). Using
discretized variables in equations (16)-(18) for equa-
tion {7) yields

8, 9D, a4
f (D“ﬁ : + Xur “J ) ) dR C;
s dx, dxg ax,

- ff,]]“’ dR!V = _”’1;__2 LA,

13
Ry P w

gﬂ(b,—svj dR
ot

(29

Substituting equation (11) into equation (3} to reduce
the number of unknown parameters and then into equa-
tion {29}, and using the same weighting functions as
shape functions defined in equation (16} together with
the central difference method (Crank-Nicolson), ¢n-
ables this equation to be expressed in matrix form as

> - e - i b l
g{}i- ll_g?_ + gii- l/..gL — fif + 172 4 911:(! 172

+ _1;’15+lf2 — .‘&I_r g(gn-l-l — En) (30)
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where supscript # + % represents the half time step
and ¢" and ¢"*! are the mass concentration at time
steps n and n + I, respectively. Further applying of
central differences to equation (30) yields
(Q{FH + C )a'l‘"' (Cr:+l n)ﬂL
— qn -k + qn -+ q::jl + QuC + Eg+l

p)
+ g_L 4+l _ A
vl Ble —¢n G

where C% 1s a matrix representing the distribution of
concentration difference as a function of transverse
dispersion coefficient, a7, at time step #» and C} is a
matrix representing the distribution of concentration
difference as a function of iongitudinal dispersion coef-
ficient, o;, at time step n. Now, v? is a vector repre-
senting the sum of concentration distributions for the
element where for a two-dimensional problem,

Viadow, V.V [aDidw;  oD:dw; Vi o, ow; i
= = —— 4 — | 4 erlbi | R 32
CUA ¢ E;‘ .}!: d)j'l: V 6\; X, U a.'(.'g a.\'; a.\'] ax; V a..\-g 6,'('_7 ( )

Vioadaw; V. V. /aDaw;  adow\ Vi oD oy
= My b ——— ] p i R 33
Clj = cf 2‘: R.[ qu[ V ax, éx, v \dxox,  dx, ax, V 9x, dxs (33)
_ ¢ e 34
v(.J CJ E \.’1 a ”’ + rw dR ( )
¢ R '

where R* is region of an element and Z, means the sum for all elements. To compute the elements C%;, C¥y., and

vy, a linear shape function ¢ and a constant function of @ are used throughout this paper. The performance of
both functions are evaluated by Xiang and Elsworth.!? To solve equation (31) for the parameter vectors a; and

a7, equations written at two consecutive time levels ¢

(C:x+2 + C"ntrl)a._‘r + (CaH" + C'ni"l)aL

Equations (31) and (35} can be written in compact ma-

trix form as
gg‘;_-bl + g:{r QJL;‘*‘I + g’l’. :1 ET _ g;r-i-l
[ grlx.-hl + g?'-f] {_G_:_L} {q;ﬂ""}
{36)

g;:}.-i-l 4 «(;'71".*‘;
where g7*"' is the sum of right-hand terms in equation
(31) and g/ *2 is the same in equation (35).

After assembling the coefficients in equation (36),
the least squares method can be used to reduce the
residual error.'® The parameter vectors, arand o, , can
then be solved directly, provided adequate boundary
conditions are defined.

Additional parameters

When the transmissivity cannot be obtained or the head
distribution is not available, the velocity components

n -+ band ¢ = n + 2 are needed as

n+?. + qn+} + qi:‘E-Z + g‘-ﬁjl 4 3{:5-1—2 4 ygi-l — A_z_t, Q(Cn-i-.? _ cné l)

(35)

cannot be determined from equation (6). This case makes
inverse solution for the dispersion coefficients more
difficult. However, if additional data sets defining the
spatial distribution of contaminant concentration are
available with time, and the dispersion coefficients are
sufficiently large, these parameters, including velocity
components, can be obtained from the inverse solu-
tion. Since the velocity components are not available,
the dispersion coefficient cannot be obtained directly
but can be defined indirectly through the components
of the hydrodynamic dispersion coefficient. In this case
there are five parameters that define each element for
the two-dimensional problem (three components of hy-
drodynamic dispersion and two velocity components).
Using a weighting function w and integrating equation
{7) vields

[ 3 dc ) m
f — (Dag 5;;) - E(cvxn)] wdR = b [ S 0.0 (O] 8x. —

+ | OXe i

dc
Xua) +F— [ W 7
Xoor) a!]u dR (37}

This equation can be further integrated by applying Green’s theorem to obtain

my

i de dw o
f Daﬁg;wi - —(CV,,“):| R=——TF 0

r - dxp O Hp ey

AT (t)cu (t) + J. — W dR f Cry dRIV (38)
R

Ry
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Using equation (15) and
Dop = Dop®y (39)

we can write equation (38) as
ggl-ril?.é[ + gg;il E{ o CrH-i.'_dr1

Curlfi-s - gu:‘:_c_{S

= gg-el/: + gﬁ_:h‘l — E;E(E’H‘l _ EH) {4(})

By applying the central difference method to equation
{41}, and for four additional but similar equations writ-
ten at successive time steps, a matrix solution can be
obtained. Thus

CinCnCiaCuCisT (d fi
C—»l C-n C':: C'vq C‘rs (1’3 f_

= @n
Csscsw Cﬂ Cs.: Cs-'s dﬁ f:;
where for ¢ = 1,2, ..., 5 we have
Ca=Ci -Gy (42)
Cea=ClY) — Cliy, (43)
Coy = Cit1 = CL, (44)
£§4 = g:.lnfxl - __C__g.\'l (45)
£§5 = g:‘a‘zi - (_jg.\"_v (46}
and
depi s
b &, Lo R ¢ "
”‘,‘ zf 8\161, (47}
. deh;
ik ;j‘b‘aha fm (48)
R
ey BRJ ag; dw; v
”‘ 2k 2—[— a\'s dx;, 8\16\-, dR c (49)
u\"uk EJ.(I)A(I):_‘dR o+ (50)
'] I
Con=3 [ @ TLdR e s51)
¢ r 42

and n represents the time step: d,, dh, and d5 are hy-
drodynamic dispersion vectors Di;, Do, and D-., re-
spectively; d, and ds are velocity vectors V,, and V,,,
respectively; and f,—fs are the right-hand terms of
equation (40}.

A solution for the unknown parameters D;,, D;a,
D-, V., and V,, can be obtained from equation (41).
With these parameters defined, the dispersion vectors,
arand a,, can be determined directly by using velocity
vectors V\, and V.. and equation (11).

When velocities are relatively small, dispersion plays
an important role, enabling the dispersion coefficients
to be obtained directly (see equation (11)). As the in-
fluence of dispersion becomes less apparent at higher
flow velocities, the system of equations becomes less
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sensitive, making it difficult to determine dispersion
coefficients. A solution can be obtained directly from
equations (36) and (41). When more observations are
available, the average and least squares methods can
be used in this solution process to reduce the effect
of noise on the resuit, as documented by Xiang and
Elsworth.?

Figures I and 2 illustrate the effects of velocity and
the dispersion coefficient, respectively, on the shape
of the contaminant front at a time level of + = 1.0 sec,
It is apparent that as velocity increases, the position
of the front advances further forward but retains the
same shape for the different velocities, as illustrated
in Figure I.

Figure 2 illustrates the relationship between the shape
of the front and the magnitude of the dispersion coef-
ficient. The front is very sharp when the dispersion
coefficient is small, representing near plug flow, and
flattens when the dispersion coefficient is large. From
the characteristics illustrated in these two figures the
time step between observations should be small for
parameter estimation of dispersion coefficients in high-
velocity transport to ensure accurate determination.
However, when the dispersion coefficient is small, es-
timation is more difficult, and the proposed technique
may not perform well. This suggests an alternative
method outlined in the following.

0.75

Co o050+

0.25

0.0

Distance x; (m)

Figure 1. The relationship between relative concentration and
distance {m} for different velocities (m sec™"}

180

B.754
Co oS04 D=0.1

<D =005
=0.005
025 4
V=025
0.00 T t T T T
o 1 2 3 4 5
Distance x; (m)

Figure 2. The relationship between relative concentration and
distance {m) for different hydredynamic dispersion coefficients
{m?sec™7)



Parameter estimation in groundwater transport system: J. Xiang and D. Elsworth

Integration method

In assembling the matrices €, and Cy it is apparent
that the concentration differences between adjacent
nodes are the equivalent of head differences in the flow
problem. If the difference in heads between adjacent
nodes is zero, the inverse soiution cannot be obtained
from equations (36) and (41), Unlike the flow problem,
however, where head differences may be maintained
indefiitely, concentration differences will disappear
with breakthrough of a contaminant front. As this oc-
curs, concentration will remain near constant at all
nodes, experiencing breakthrough for domains con-
taining continuous sources. Figure 3 illastrates, for a
one-dimensional example, that when contaminant
breakthrough occurs at node 4 (x = 4), all nodes behind
the front exhibit the same concentration, suggesting
that this kind of inverse problem cannot be solved.
However, if a sufficiently long time period (i.e., long
enough for the contaminant front to pass the region of
interest) is considered and records of concentration for
all times and all locations are available, the problem
becomes determinate. The concentration histories at
each location exhibit a unique breakthrough period,
which is indexed to the dispersion coefficient in that
element. The differences in contaminant volume be-
tween nodes for a time period t = 5 sec are shown as
the shaded area in Figure 4. This illustrates that the
differences in contaminant mass passing through nodes
in a specified period can be obtained. For an ade-
quately long period the differences in contaminant vol-
ume between nodes are constant. Consequently, it is
this volume difference that should be used for inverse
solution of dispersion coefficients, rather than con-
centration differences themselves. The only require-
ment of this method is that breakthrough occur at all
nodes.

fm fm

g gc d [
j [ax“ (D“'B 3.1:5) T ax, (c V“)] dr = f [ET 2

Pw=i

O..c.(D]]6x, —

1.00
=3 x-d/
0.75
Co 0504
025
0.00 '_/ _/ /
4] H 2 3 4 5

t (time)

F_igare 3. The relationship between relative concentration and
time at different locations, where distance x {m) is used

t (time}

Figure 4. The relationship between relative concentration and
time at different locations, where the shaded areas represent
the volume difference between nodes and distance x {m) is used

An appropriate integration method must be used in
this technique. The trapezoidal rule has been shown
to perform best in this role'? and will be used in the
following. Integrating equation (7) yields

Xppad + 5 c] dt (52)

where I, is the initial time level and 1,, is final time level. Based on the composite trapezoidal rule, equation (52)

can be written as

1.9 dclto) a dc(t) @
5 D 4+ — ey 9
2 |:a_\-a ( ap A ) o, (Dcrﬁ o1y ) or. {c(ta)V,)

—~a—<c(ru}vn>] - RIS [‘

0%q =t

Ou (Ii)}cu (t()) + Ou (Im)cu (rm)} + 2

_i . =1 B_C_'(l_u)_
o, (C(I,,,)V,“,}] 2 [ “( e axﬂ)

m~1 —
= (tk)cnu (rk)] H 6(\3 - chx) + M

At
(53)

k+1

Simiiarly, the three components of hydrodynamic dispersion D, in the two-dimensional problem can be reduced
into two unique dispersion coefficients through equation (11). Then, using the finite element method and substituting

shape functions to discretize equation (53) yields

n— i m=1
[ [Crlte) + Cr{t)] + 2 C:UA):I ar -+ [ [CLlte) + CLlt)l + X CL(’L):I @y

L=

h.)lm

quvﬂ) + qt(tm) + U,_ (fi!) + UC(I,,,)} + E [Q:(fk) + U( (IA)}

k=1
m=i

1
= Af B(Em - EU} (54)
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Since there are two unknown vectors, one further equation must be defined. Assuming concentration distribution
to be available at a subsequent time level, then we can write an equation for the first m, observation sets as

mz— I |
[ [Crlte) + Crlt)] + z Cr (I.k):l oy b [ [Crite) + Crin,)] + 2 Cf_(f.u)] ar
k E=1

nea— |

_[ (f(‘l) + qr(rm) + vc ("i?) + UL (Inn) + 2 {qf(rk) + UL (Il\)] - K_ B((—mw - (’0) (55)
P

l\.)a---

where n1, is not the same as n. A uniform velocity of V = 1.0 m sec™' and uniform
Equations (54) and (55) can be written as dispersion coefficient of «; = 1.0 m were used for the
CrrCr1 (a » whqle field. The concentrat@on distribu_tions computed

[— - ] {M } = {—M 1} (56} at different time levels are illustrated in Figure 5.
Corlrr £ Figure 5 shows that at early time the concentration

profile within most elements is zero. As time advances,
the concentration on the side behind the front in-
creases, and the influence of dispersivity is quite ap-
Co= _{CLU“) + Colt)] + 2 Colt (57) parent. Direct solution based on equation (36} is used
k=1 ' . - . ' .

in the inverse solution for dispersion coefficients. The

=1 distribution of dispersion coefficients computed by this

[Crte} + Cr{t] + 2 Crlty) {(58) method is illastrated in Figure 6 for different moments
- - k=1 in time. At early times the parameter distributions {(as
apparent in curves t = 1, 3, and 5 sec in Figure 6) are

where

m=1

QTL =

| =

1

Cir= _{CL(!U) + Coltud] + 2 Crlti} (5%

ko |

mia—1
Crr= ‘icr(fu) + Crlitu)l + 2 Cr(t) (60)
k=1
and fr and f#*! are the right-hand terms in {34) and
(35), respectively. Solving equation (56) with appro-
priate boundary conditions enables the parameter vec-
tors a; and ar to be obtained. In this method it is
required that

Loty 2 15 (6

where ¥ is the time required for the contaminant front
to break through within the entire region of interest.

Concentration

o 5 10 15 20
X

Examples Figure 5. The relative concentration distribution along an aqui-

. . . , fer for different times (sec)
A one-dimensional example is considered to demon-

strate the proposed techniques. For inverse solution a
constant finite element is used that returns superior 10

results over those obtained by higher-order elements.!*
All the methods presented use the least squares method - i
. .. . = 0.8
to reduce the residual error. The Gauss elimination .2 )
method is used to solve equations (36}, (41), and (56) g |
for the desired parameters. g 06
=

Problem and results % 0.4 -

The problem of unidirectional transport in a one- g ]
dimensional aquifer is chosen, Boundary conditions of A& 027
concentration at both ends are assumed known, but
no measurements of dispersion coefficients are avail- 0.0 r
able. A total of 20 equal length elements are used to 0 15 20
represent the system, with normalized concentrations -
of zero and unity applied at respective ends. Discharge !
quantities at both ends of the system are computed by Figure 6. The distribution of the dispersion coefficient inverted
forward estimation to obtain a true head distribution. along the aquifer for different times {sec)
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incorrect, except where the concentration difference
between nodes is nonzero.

However, as time advances, the parameter esti-
mates improve. The curve representing r = 7 sec gives
an exact solution for the dispersion coefficient in which
no difference in concentration within the region is zero.
At this stage the solution is optimal, since at future
time steps, parameter estimation becomes indetermi-
nate as the difference in concentrations approaches
zero, Figure 6 also illustrates that the average method
mentioned previously does not perform satisfactorily,
since correct solution is dependent on the time period.
Before the contaminant front reaches the region of
interest, the correct solution cannot be obtained. Only
where dispersivity of the aquifer is very high and
breakthrough occurs throughout the domain will this
method vield good resulis.

Figure 7 illustrates the distribution of relative error
associated with the inverted parameters for different
individual variations of the real dispersion coefficient
(D = 0.5, 1.0, 1.5, 2.0, and 2.5 m* sec™'). The param-
eter sensitivity for different locations is illustrated in
this figure, where coordinate x, represents the location
of parameter variation. it is apparent that the error
behind the front is lower than that ahead of the front
and that the dispersion coefficient strongly affects the
accuracy of the prediction behind the front. This sug-
gests that because the sensitivity behind the front is
higher, parameter determination will be more accurate
for upstream locations than for locations ahead of the
front.

Figure 8 illustrates the distribution of the sum of
squares errors in evaluating the dispersion coefficient.
It is apparent that when the dispersion coefficient is
perturbed within the flow domain, the sum of squares
errors in the parameter estimates on the side behind
the front are little affected but ahead of the front the
sensitivity is much greater. The relative magnitudes of
the parameter also affect the accuracy, as is apparent
in Figure 8. The greater the dispersion coefficient, the
larger this effect, as is shown by the curve D = 2.5
m?* sec™! in Figure 8. This figure illustrates the effect
of dispersivity variation on the estimated parameter
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Figure 7. The distribution of relative error along an aquifer for
the variation of real dispersion coefficients {m? sec ) at different
tocations
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Figure 8. The distribution of the sum of squares error of in-
verted parameters along an aguifer for the variation of real dis-
persion coefficients {m? sec™’)
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Figure 9. The distribution of parameters {dispersion coeffi-
cients and velocity) estimated by the expanded method aiong
an aquifer for different times {sec)

distribution. From this figure it is apparent that better
parameter estimation can be obtained in transport sys-
tems of uniform properties.

All errors shown in Figures 7 and & illustrate that
the error ahead of the front is larger than that behind
the front, The local variation of dispersivity affects not
only the parameters estimated at that location, but also
the accuracy of the parameter distribution.

Additional parameter determination

In most practical problems the distribution of ob-
served heads may not be available, but concentrations
and appropriate boundary conditions may be deter-
mined. The method presented in the previous section
can be applied to this case to obtain the distribution
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Table 1. Sum of squares error of the dispersion coefficient
for different noise levels

Noise
Noise level free 5% 10% 20%
Direct solution 0.54£-3 2.4914 4.655 14.085
Integration 0.1861£-6 0.09536 0.4039 1.8444
method

of both dispersion coefficients and velocity compo-
nents.

The same one-dimensional example as used previ-
ously is utilized, except that velocity remains as an
unknown. Three distributions of concentration at suc-
cessive time intervals are necessary to solve this prob-
lem. Under boundary conditions similar to the pre-
vious ones the distribution of estimated parameters is
determined and illustrated in Figure @. 1t is apparent
that the distribution estimated at early time, similar to
the case of estimation for dispersion coefficient alone,
is poor but improves at late times. Furthermore, it is
interesting to note that measurement of the dispersion
coefficient on the boundary is not required for solution,
since the coefficient matrix is no longer singular, pro-
vided the concentration gradient is sufficiently large.
When the dispersion period is sufficiently long to en-
able three measurements of concentration {0 be made
(three measurements for the one-dimensional problem
and five measurements for the two-dimensional prob-
lem are needed), the parameters of velocity and dis-
persivity can be obtained with adequate precision,
without prior knowledge of the porosity of the medium,.

Results by integration method

All results reported previously illustrate that param-
eter estimation in transport problems depends primar-
ily on dispersivity magnitudes and observation inter-
vals. If the dispersion period is too short, parameters
in most of the body cannot be adequately determined.
and some numerical difficulty may also occur. To avoid
these difficulties and successfully obtain parameters,
the integration method can be used. If this method is
applied to the previous example, the estimated param-
eters are almost exactly the same as the true solution.
To compare this method with direct solution, several
different noise levels can be considered. Noise may be
randomly generated and added to the concentrations
computed through forward solution. The sum of squares
errors in the estimated parameters at different noise
levels are illustrated in Table 1.

In comparing these values it is apparent that when
the noise level is low, the sum of squares errors ob-
tained by the integration method are two to three or-
ders of magnitude less than those obtained by direct
solution. As noise levels increase, this difference is
reduced, but an order of magnitude difference still re-
mains between the two methods. This suggests that
the integration method performs better than direct so-
lution in all circumstances.
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Conclusions

Two finite element methods have been presented for
parameter estimation of transport systems in the re-
gions over which a concentration front has passed. A
constant basis function element is used. The method
has been used successfully in the estimation of both
dispersion coefficients and velocity components. The
following conclusions can be drawn from this analysis:

. A direct algorithm that uses two subsequent mea-
surements can be used for instances of high dis-
persivity where subsequent data sets are quite close
m time. In the presence of random sampling noise
the estimated parameters may be significantly af-
fected.

. An integration method that uses a full measurement
profile vields improved accuracy. In addition, this
method avoids numerical difficulties associated with
many inverse solution technigues, and the effect of
noise on the estimated parameters is largely reduced
when compared with the direct algorithm.

3. Both direct and integration methods can be ex-
panded to invert for exira parameters. When ade-
quate concentration measurements are available, the
head distribution is not required in the estimation
of dispersivity and velocity components.

4, The constant basis function element (¢ = 1) per-
forms very well in all instances. Because the as-
sembled total coefficient matrix remains nonsin-
gular, irrespective of the boundary conditions applied,
the boundary condition of the dispersion coefficient
need not be provided if contaminant flux is avail-
able. Consequently, the numerical solution for pa-
rameter estimation in transport systems can be readily
applied to practical problems, since in situ mea-
surement of the dispersion coefficient is difficult.

5. The equations for the methods are derived in cases
for which the dispersivity is varying with position
in a two-dimensional case, and it is considered that
the methods would be applicable in such a case.
However, the methods have not been tested for
spatially varying dispersivities in a two-dimensional
case.
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Nomenciature

A diffusive matrix

b thickness of aquifer

B matrix representing element vol-
umes

C, G contaminant concentration and con-
centration at well, respectively

Ci " contaminant concentration at note {



Cos Cpn Cpp

CHCY

Dn[i
h, h

hﬂ, Il], h”
i

kr

Fi, Fs
M, M
i,

"

n,

,r(r

qr
i e
er

R
R Ry

R!H« R[l"

Parameter estimation in groundwater transport system: J. Xiang and D. Flsworth

and concentration vector at time

step n. respectively

specified functions, concentration
vector

matrix representing the distribution
of concentration difference for a;
and a; at time step n

components of hydrodynamic dis-
persion tensor

head and head at node /. respec-
tively

specified functions

vector of head

retardation coetficient

matrix formed by A. V, and B

number of data sets

number of wells in region R

number of time steps

porosity of the porous medium

components in v, direction of unit
normal vector

vector formed by right-hand vectors
of equations (19), (31), and (33)

discharge vector of wells for time
step n

discharge of well at note w

flow region

specified head boundary and dis-
charge-prescribed boundary, re-
spectively

concentration boundary. contami-
nant inflow boundary condition,
respectively

storativity of aguifer

time step

tirne and time level n

time required for contaminant front
to break through within entire re-
gion of interest

transmissivity tensor and transmis-
sivity at note i, respectively

velocily components and compo-
nent at node fin x, direction
{a = 1 or 2), respectively

vector representing the sum of con-
centration distributions for the
element at time n

coefficient matrix representing the
advective components

w weighting function (if subscript, a
well index)
Xov X coordinates and coordinates at wells

Qp. Oy, Xy &p

longitudinal and transverse disper-
sion coefficient and vectors. re-

spectively

a. B subscript for the summation index
(lor2)

S(x) Dirac delta function

P, o shape functions
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