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Parameter identification of nonsteady groundwater
flow systems

Jiannan Xiang® & Derek Elsworth

Deparmment of Mineral Engineering, Pennsylvania State University, Pennsylvania 16802, USA

This paper presents several methods which are based on multiple data sets to
reduce the errors caused by the noise in the measured data. The comparisons
show that the accuracy of inverse solution depends both on the noise level and on
the number of consecutive observations. For fow noise levels, both average and
least squares methods perform well. When the noise level is high, integration
methods based on the trapezoidal rule yield better accuracy. However, when noise
dominates the record, all metheds may yield an unacceptable error. To reduce
noise levels, a Butterworth filier is used. Using filtered data, the accuracy of the
estimated parameters is improved. A computed example shows thai the errors in
transmissivity and storage coefficient are different because they have different
derivatives. Application of the inverse methods are demonstrated in a two-
dimensional problem.
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NOTATION n Number of nodes
N The order of digital filier

o Coeflicient of the numerator poiynomiat of q A vector formed by Q

the filter function Ow, Q. Q' Discharge, discharge vector and vector for
b; Coeflicient of the denominator polynomial step i

of the filter function R Flow region
b Vector formed by all right terms in eqn {19) dR Boundary of aquifer
5 Matrix representing distribution of head dR,,dR,  Specified head boundary and discharge

difference at step n boundary, respectively
E Matrix comprising submatrices H’ 5.8, 8 Storage coeflicient, storage coefficient
g Filtered data vector and vector for step 7
g Modified filtered data A A matrix representing the distribution of
fi Head storage coefficient in the domain
fry Iy Head at both ends of aquifer in example I Time and time level J

problems At Time step
Irgs by B Specified function T Transmissivity
H A vector of head T Vector of transmissivity for sieady state
H A matrix representing the distribution of and for step |

hydraudic head difference within the domain T Malrix representing the geometric trans-
k Number of parameters missivity of the domain
K Matrix formed by H and B T Average vector of several transmissivity
L Filter function vectors
n Number of data sets X,V Xy, ¥y Coordinates and coordinates at wells
*Present address: Bureau of Economic Geology, University of a Ph;%se shifl
Texas, University Station, Box X, Austin, Texas 78713-7508, 8 Gain factor
USA. £ Relative error

€ Error vector of solution or residual of
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I INTRODUCTION

The development of groundwater management and
reservoir withdrawal strategies usually require estima-
tion of parameters describing the system or aquifer. For
nonsteady flow problems, a summary of previous
methods are given in the review by Yeh'?. Yeh er al?
used the least squares method for the nonsteady flow
problent in a direct approach. Kriging was used as a pre-
sampling filter to reconstruct the head distribution. The
distinct advantage of this approach over optimization
based approaches was that it involved no iterative
searching.

Loaiciaga and Marino®® developed a method for
estimating the elements of parameter matrices in the
poverning equation of flow in a confined aquifer. The
estimating methods, named respectively the two-stage
least squares and three-stage least squares, were appiied
to a specific groundwater inverse problem and compared
with an ordinary least squares estimator. The three-
stage estimator provided a closer approximation to the
actual parameter values than the two-stage estimator.

Dagan and Rubin® developed a stochastic method
to identify aguifer natural recharge, storativity and
transmissivity under transient conditions. The aquifer
was unbounded and a first-order approximation of the
flow equations with slowly varied transients was used.
Based on these assumptions, the expected values of
transmissivity and head were expressed by analytical
equations.

Yoon and Yeh'® used the finite element method for
parameter identification in homogeneous and hetero-
geneous media. Rosen’s gradient projection technigue®
was used to handle constrainis combined with the
Gauss—Newton method. The computed results showed
that idecal estimation of the parameters could be
obtained by their proposed method when observations
were noise {ree. The estimations deteriorated in the
presence of noise. They also noted that as the dimension
of the parameter increased, the ill-posedness of the
problem became worse. Using time series observations
would not greatly alleviate this problem.

Kool and Parker® used the Levenberg-Marquardt
algorithm for analysis of the inverse problem in
transient unsaturated flow. Their analysis showed that
despite the sensitivity to the unknown parameters, their
distributions in space and time are important in deter-
mining parameter identifiability. As long as a correct
constitutive model is used and the directly measurable
parameters eliminated, a reasonably good prediction of
hysteretic hydraulic properties could be obtained.

Ginn et al.® presented a novel method for parameter
estimation where the model is inverted following the
spatial discretization but before the finite difference
temporal discretization is attempted contrary to practice
in the past. The Laplace transform is used to replace the
discretization in time for the system of ordinary differ-

ential equations. The existence and stability of the solu-
tion is apparently dependent upon selection of the
discrete values of the Laplace variables in the trans-
formed model.

The objectives of this paper are to: present several
methods for parameter identification in nonsteady-state
groundwater systems with noisy data; investigate
solution error in each of the proposed methods using
numerical examples; and demonstraie the usefulness of
the proposed methods, In this paper, the finite element
method is used to discretize the physical region and
interpolate head and transmissivity functions. The finite
difference method is used to discretize in time. For
simplicity and uniqueness’ and to provide additional
comparison, the direct method is used exlusively in the
inverse solution.'”

2 PROBLEM DESCRIPTION

Forward and inverse solution of the two-dimensional dif-
fusion equation may be completed through finite element
discretization in space. This is described in the following.

2.1 Differential equation

Basic assumptions for the one- or two-dimensional
problems of groundwater How considered in the
foliowing are that the aquifer s horizontal, inhomoge-
seous from point to point and continuous in the region.
Only confined problems are considered where the
transmissivity is directionally isotropic.

The governing equation for the groundwater flow
systern can be writlen as:

ai\; (Taif,) = Z gy l1) H‘S('\'r‘ — X))+ S%} (n

where § can be 1, 2 or 3 for one-, two- and three-
dimensional problems, respectively. For a lwo-dimen-
sional probiem, the equation can be specialized as:

g ah d ah
o 75) 5 (75)
bl
=Y 0u(08(x — x)8(y 1) + S5, @

and must satisfy the following conditions:

h(x,3,0) = y(x, 1) X,yin R

h(—\'r}'r {} - hl (-\',}', f)

Oh oh
Ta n, + T—é; My = fg(x, 0, 1)

x.pindRy
x,yindRs
where r{x, p, 1) is head at poinl (x,y); T is transmissiv-

ity; § is storage coeflicient; Q,, is source—sink term; x, y
are coordinates in two-dimensional space; 1 is time; R is
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the flow region; dR is the boundary of the aquifer
(dR\UdR, = dR); and hy. /1,1 are specified head
functions. #(x) is the delta function and &{x) = cc for
x = 0; 8(x) = 0 for x = 0; 1, and n, are the components
of the unit normal vector; and x,, ) are the coordinates
of a well.

2.2 Governing equation

Using a low-order finite element,'’ egn (2) may be
readily transformed to a system of linear equations. For
steady-siate conditions, the equation may be written as:

TH*‘-“_“QW'{‘qﬂQ (3)

or
HT=Q (4)

where T is & matrix representing the geometric
transmissivity of the domain; H is a matrix representing
the hydraulic head distribution within the domain; H is
a vector of nodal head magnitudes; T is a vector of
elemental transmissivity magnitudes; Q is a vector of
discharge; q is a vector of discharge on the boundary;
and Q.. is a vector of discharge at a nodal point
representing a well.

For the nonsteady-state condition, eqn (2) can be
wriiten as:

JH .
or
OH

where § is & matrix representing the storage coeflicient
distribution wiithin the domain.

2.3 Forward solution

The adeguacy of the {ransient inverse mode! is verified
against forward solution to the same problem with
arbitrarily prescribed distributions of the hydraulic
paramelers. Data for the inverse solulion are deter-
mined from a forward solution of an arbitrary
homogenecous domain in the nonsieady state using eqn
(5). The finite difference method is used to discretize the
time derivative. For the initial solution, H® may be
oblained from the iaitial data fA(x,3,0) = hp{x, »).
Therefore, egn (5} can be written as:

TH? = Q° (7)

For subsequent head distribulions, the central finite
difference method may be applied to eqn {5}, resulting in
the following equation:

TH™ + W)= Q7 + Q +25(H™ — H')/A:
(8)

Alternatively:

AH = QI £ Q' — CH 9)
where:

A=T-25/At

C=T+285/At (10)

Q. Q' are discharge vectors at steps i and i+ I; and
Ar is the time-step magniiude.

By cvaluating the matrix of eqn (9) and solving eqn
{7), the head distribution at successive time levels may
be determined.

3 PARAMETER ESTIMATION FOR NOISE-FREE
DATA

Unlike the steady state, nonsteady problems involve
release from storage and, if strongly tiransient,
enable transmissivity and storage magnitudes to be
determined. Methods presented in the following
address the esti-mation of both transmissivity and
storage coefficient when noise-free time series data are
available.

3.1 Inverse solution for transmissivity

Using the finite difference method to discretize in time,
eqn (2) may be written as:

a ani it i A
axi (T 3.\‘,- ) - Z Q“' ('\f - '\iw) + 8§ A7
{11)

For the two-dimensional case, eqn (l11) can be
expressed, according to lime sieps § and i+ 1 that
bracket the time level of interest, i + 1/2, as:

a (_on! 8 f_ i

o (T*“—*a_\- ) 5 (75)
a{_ont a [ ok
o (T—ay ) +5(7%)

- _ ’lva_lf
=-> o' -> 0o, +S% (12)

Using the finite element method to discretize head at
time siep j:

and transmissivity;
T=3XdT; (14)
where ¢ and ¢ are shape functions interpoiating head

and transmissivity, respectively, and need not be the
same. Substituting eqns {13) and (14} into eqn (8), one
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obtains:

(H*' + H)T = Q™ + Q' + 28 (W™ —H')/A:

(15)

Assuming that the vector of storage coefficients, S is
known, one can formulate S, H' and H'™' and
prescribed vectors Q° and Q'*' using the measured

head and discharge data. Subsequently, transmissivity T
may be determined direcily by solution of this equation.

3.2 Inverse solution to determine additional parameters

If the storage coefficients are unknown, eqgn (15) can be
rewriiten as:

(H'™ £ HOT — 28'S/At = Q7Y + @ (16)

where B' is a matrix representing distribution of head
differences at time »; and S is a vector of storage
coefficients.

To solve this equation for both T and S, it is necessary
to have one additional data set. Assuming that the
system is also monitored at the i+2 time step,
construction of 2 similar equation yields:

{HH-Z+Hl'~‘r"l)T__zBi+is/A!mQf+2+Qi+l (17)

By solving eqns (16} and (17) simultancously, the
desired parameters vectors T and S can be obtained.
This procedure may be extended Lo enable determina-
tion of additional parameters such as arcal discharge or
point discharge. For cach additional parameter vector,
one more data set must be added. Simultaneously,
solution of these equations will yield the required
parameters in theory.

4 PARAMETER ESTIMATION FOR NOISY DATA

In reality, most observations contain noise. Conse-
quently, a noisy head distribution measured at different
moments in time may result in different parameter
estimates when eqns (15}—(17) are used. To minimize
the influence of noise on the estimated parameters,
the procedures presented in the following may be
invoked.

4.1 Solution for transmissivity

Four methods based on time series observations are
presented for parameter estimation of transmissivity.
They are defined as the average matrix, average
parameler, integration and least squares methods.

4.1.1 Average mairix method

As mentioned previously, eqn {15) is based on two
independent head distributions representing conseculive
time steps separated by the interval Ar. For m data sets,
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eqn (15) may be simply expanded to the following form:

M1

(iH)T }:Q* ZS(H" ~HY) (18)

for a transmissivity vector T. Since this method uses
additional data sets, it should give improved resulis for
noisy data,

4.1.2 Average parameter method
According to egn (15), for all time steps one can
formulate a system of equations using any two
consecutive data sets as follows:

(HY + H)T = Q" + Q! +£’S(H ~HY)

(H'+H)T=Q +Q + 5= S(H* ~ HY

(H2+H3)TmQ2+Q3+_S(H3_H2)

(Hm 1+HNI}T Qm-— +QH2+ S(Hm Hm-—l)

(19)

By solving this set of equations, /n parameter sets may
be obtained. The finai parameter, transmissivity, can be
determined by averaging the recorded transmissivity
magnitudes as:

At

n

2T
T= 20
m (20)
4.1.3 Dhuegrarion method

Alternatively, an integralion method can be used for
noise reduction. Integration of eqn (2} yields:

[ (7)< (7)) o
- j’”’ [ 0utn TT 83— )9

ah
il 2
-!—‘L Sé) dt 20
where 1y to 1, represents the time-interval of interest.

To solve this equation for transmissivity, T, various
numerical integration methods can be used. Based on
the ‘composite trapezoidal rule’, each term in eqn (21)
can be expressed as:

12 Oh(n) Biz(:m)
S[B_\J’(T dx; )+a‘1( ax; )]
e 7] N (I,-) i . 1|
* £t Dx; (T (';\ ) - 2 Q1) + O(1,) + Z o)

Q=]
h(lm) - ]1(!0)
o ) TR0/ 22
x Hé(.\j N (22)
Since the derivatives of head 8/i/d¢ can only be obtained
at the midpoint of each element, the ‘composite
midpoint rule’ for numerical integration may be used.

{y;= _v“.)] dr

-\'wk) +5
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This transforms the last term of eqn (21) as:

L
J(} f(\) dx = U{\l) +f(,\‘2) +.f(~t3) + 'f(xm)EAx
(23)

where x; are coordinates at the midpeint of element i,
Ax is the length of the element, ¢(x;) are integrands and
L is the length of the domain.

Using the finite element method to discretize eqn (22)
yields:

(:'12' [H(IO) + H(“m)] + miH(!z))T

st

i -1}

= 5 [Q(IQ) + Q(qu)} + Z:l Q({"}

+ o H(5,) ~ H (1) 24)

Other methods such as those based on the ‘composite
Simpson’s rule’ may also be invoked to represent the
integrals in eqn (21}.

4.1.4 The least squares method
Equation {19) is exact at any time level and may be
compactly writlen as:

ET=b (25)

where Fis an (1 + m1) % k matrix comprising submatrices
H', and k is the number of parameters desired from
inverse solution; # and m have the same definitions
as before, and b is an (#+ 1} vector formed by all
terms on the right-hand side of eqn (19). Assuming
the residual error in egn (23) is ¢, and using the least
squares method, the solution of eqn (25) can be written
as:

T=(H"H)Y'H"b (26}

where the error e is minimized as &{e’¢) /07T = 0.
4.2 Solution for transmissivity and storage coeflicient

In principle, all methods described previcusly can be
used to determine the magnitude of the unknown
storage coefficient vector. Where storage distributions
are desired, the number of measured data sets must be
doubled. For example, eqn (16) can be extended for m
sets of observation as:

KHKZR ql

KERKM T ql
. (27)

- S -

KlmKZm qm

where K= H"* 4 H',

e ( K¥=B/Ar and q'=
Qr—.—l_i_Q:_

Using the least squares method, as mentioned above,
the vectors of transmissivity T and storage coefficient §
can be evaluated.

4.3 Noise reduction

For noisy data sets, parameter estimation becomes very
difficult. To improve results, some curve-fiiting methods
such as polynomial, exponential or nonlincar inter-
polation may be used to smooth the data. Simple
smoothing methods may actually smear the data and
an alternative is to use a digital filter to reduce the
noise level. Low pass fiiters are most appropriate
since noise is usually of high frequency. The Butter-
worth filter is a suitable low pass filter and may be
expressed as:

= N
— o _j
1= bz
i=

where N is the order of the linear constant coefficient
difference equation or filter; and «; and b; are coef-
ficienis defined by the order, N, cut-off frequency or
input data.

The relationship between the input (noise) data h{r)
and the output data #'() can be expressed by:

{V JV
W) == ah () + 9 bhltey) (29)
F=I1

j=0

It 1s necessary to choose both a reasonable number to
represent N and a suitable cut-off frequency, When the
curve representing head variation with time is very
variable, the number AN shouid be appropriately
increased. For more practical applications, & small
number & and a middle range value of cut-ofl
frequency should be initially chosen. After computing
a certain error, one can use a trial-and-error method to
compare these errors until 2 suitable cut-off frequency is
found which gives the least error.

5 EXAMPLES

Two example problems are considered. The first
one is a one-dimensional problem with a linearly
distributed transmissivity. All methods identified in
Table 1 are tested on this simple problem and the
relative accuracy of prediction is determined. The
second problem geometry is two-dimensional and is
used to illustrate potential applications of the methods
and establish the generality of the methods to mulu-
dimensional domains.
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5.1 One-dimensional example

The example problem is one of unidirectional flow in a
heterogeneous aquifer of uniform unit widih.
The constraints are:

(1) = 3.0 —0-0ir
gu{1) = —0-24
Ts = 1916667
The analytical solution for the steady condition is:
I(x, Nlheg = #(x,0} = 2-8854 In (x/6 + 1) + |
T(x)=x/6+1

The storage coefficient S is constant in space and given
by S=1. h, and /iy are the heads; T, and T, are
transmissivities at both ends of the aguifer and x is the
longitudinal coordinate.

To determine the influence of noise on the accuracy of
the estimated parameter distribution, three cases are
considered as follows:

case [ noise-free;

case 2: 5% randomly positive noise in the head dis-
tribution;

case 3: 10% randomly positive noise in the head dis-
tribution;

case 4: 20% randomly positive noise in the head dis-
tribution.

To obtain the forward solution, a two-node finite
element was used. The conventional Gauss method was
applied for solution of the system of eguations. The
forward solution H;, i=0,1,2,...m, for parameter
identification was obtained by solving eqn (35) subject
to the boundary conditions defined above. Using a time
step of At = 10, the distributions of head at r = 0, 20, 50
and 100 relative time units for the noise-free case are
illustrated in Fig. I. It is noted that the curves in this
figure decrease uniformly and appear to have reached a
steady state. As time step is reduced from 10 to 1, the
transient state in the early time becomes apparent as
illustrated in Fig. 2 where a discharge ¢, = ~0-12 is
used. The head distributions for cases 2, 3 and 4 in the

Table 1. The sums of square errors between the theoretical and
computed transmissivities for different noise levels

Time step  Noise-free 3% noise  10% noise  20% noise
1 7-3241E-10  0-015275 0-06651 0-334453
2 1-1500E-9  0-414756 1-36951 4-284167
3 7-3792E-10¢  0-070710  0-41162 2-787507
4 87878E-11  0-011092 335765 3941245
5 5-4380E-10  0-032245 0-10781 0-381388
6 9-5356E-11  0-152362 107671 1060827
7 4-2010E-10  (0-243445 081751 2-364574
] 2-0156E-10 0420930 328718 703-2305
9 2-2958E-10  0-044945 0-27531 4-814765

0 1-6915E-11  0-012524 {05655 0-279624

previous near-steady condition are illustrated in Figs 3,
4 and 3, respectively. These figures show that for the
noise-free case, the curves are very smooth; at the 3%
level noise has only slight influence, but at the 10% level
the noise becomes a significant component. Conse-
quently, head distributions with 10% or 20% noise may
have a large effect on parameter estimation.

5.2 Results for comparison

For inverse solution, a constant element is used. In order
to reduce the residual error in the discretized form of
egn (15), the least squares method is used together with
Gauss elimination for solution of the system of
equations. The computed hydraulic head distributions
are used directly to determine transmissivity for the
noise-free case. For each of the two subsequent sets of
head distribution data, the transmissivity vector T can
be solved using eqn (15). For a total of 10 steps, 10 sets
of T were obtained. In fact, all these transmissivity
values should be the same. However, it is almost
impossible to obtain a constant solution as a result of
noise. Table 1 shows the sum of square errors between
the theoretical solution and computed results for the

- 1=0
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Fig. §. The head distribution along the aquifer at differeat
times for noise-free case,
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e
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Fig. 2. The head distribution along the aquifer at different
times in early time for the noise-free case (case I).
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Fig. 3. The head distribution along the aquifer at different
times for case 2.
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Fig. 4. The head distribution along the aquifer at different
times for case 3.

20% Noise

Fig. 5. The head distribution along the aquifer at different
times for case 4.

noise-free case. It is noted that for the noise-free case,
the estimated parameters are very close to the theoretical
solution, although the errors vary with different time
steps.

The noise in head distribution will largely affect the
accuracy of the estimated parameters. Different com-
putations for cases 2—4 were made using corresponding
head distributions as shown in Figs 3-5. The square
errors in the estimated parameters for cases 2-4 were
obtained using the same method and are shown in Table
i. It is apparent that the sguare errors increase when the
noise level increases. The magnitude of square error
increases 8-10 orders of magnitude when noise level
increases from 0% to 5%, and the magnitude increases
one or two orders when transiting from 3% to 10% or
from 10% to 20%, depending on the methods used.

All results in Table 1 also show that by using head
distributions at different time steps, the estimated
parameters vary greatly at each time step when noise
exists. For high noise levels, the error difference at
different steps becomes worse. In order to reduce the
effects of noise, five methods, mentioned previously,
were used, as shown in Table 2.

The computed results, all of which are from the same
data, are illusirated in Table 3. From Table 3, it is noted
that all methods can give reasonable parameters for the
noise-free case. However, the accuracy of solution is
dependent on both the method used and noise level
when noise is contained in the head distribution. The
comparisons of all methods are as follows.

Method 1 (average transmissivily) works well for low
noise levels. This method may perform very well when
the computed transmissivity profile is flat, enabling an
estimate to be made that is close to the real value.
Otherwise a large error may develop. However, this
method presents a reasonable and simple procedure for
parameter estimation of nonsteady problems. Method 2
(expanding method) performs very well for high noise

Table 2. The methods used for parameter estimation in the
nensteady flow condition

Method Description

Average iransmissivity

Expanding method

Integration based on trapezoidal rule
Integration based on Simpsen's rule
Least squares method

Ut o L b e

Table 3. The sums of square errors by different methods

Method Noise-free 5% noise 10% noise 20% noise
i 0-412910E-9 0-369869E-2 0-129113E-} 11-242634
2 0 186678E-1 0-333209E-1 0-129067 0-7727143
3 0-266153E-1 0-879319E-2 0-318225E-1 0-1021264
4 0-154700E-4 0-717740E-1 03635445 4-8839186
5 0-991349E-10 0-636231E-1 0-610335 4-2753668
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levels, although when noise-free, this method does not
work well compared with the other procedures. In
addition, this method is not like methods 1, 4 and 5
which are extremely sensitive to the noise level. Method
3 (trapezoidal integration) is the best method among all
of them for noisy data since the square errors in cases 3
and 4 are the smallest. However, method 1 yields better
results for the noise-free case. The reason that method |
performs so well at high noise levels may result from the
equally weighted integration applied to eqn (4). Method
4 (Simpson’s rule) performs better than methods 2 and 3
for noise-free data, aithough the inverted results have a
large error for the high noise cases. This may result from
the nonequal weight applied to each term in egn (4}.
When excessive noise exisls at integration points with
more weight, this method will yield larger errors. Method 5
(least squares) performed best for the noise-free case. As
the noise level is increased, the square error becomes larger
and the method appears very sensitive 1o noise level.

In gencral, for low noise level data, the least squares
and average methods are recommended. For high noise
levels, the expanding matrix methods or integration
methods based on the trapezoidal rule are a good
choice.

5.3 Results for transmissivity and storage coefficients

As mentioned before, for the case where storage
cocflicients and {ransmissivity are unknowns, both
parameter vectors T and S can be obtained by
expanding the methods for transmissivity to both
parameters. For demonstration purposes, the one-
dimensional problem with a linear distribution of
storage cocfficient was solved using methods | and 5.
Only the noise-free case was considered for both the
near-steady condition and the transient condition. The
results are shown in Table 4. From Table 4, it is
apparent that the square errors in the near-steady
condition are larger than those in the transient
condition. This resuits from the higher head gradient
apparent in the transient condition. Close to the steady
state, S has no influence on the resulting head
distribution. If § is increased or Ar is decreased,
transient response is extended enabling the parameters
S and T to be better defined, as apparent in Table 4 for
both methods | and 5.

Table 4 also shows that the square errors in storage
cocfficient are much larger than those in transmissivity,
The reason is apparent from eqn (1), The parameters /i,
T and § are represented by different orders of
differentiation. Head is represenied by a second-order
differential, transmissivity by a first-order differential
and storage is constant. When eqn (1) is solved
numerically, i1 is determined with the highest accuracy
and § with the lowest accuracy. ! Consequently, for
the same problem, the same accuracy cannot be
obtained in the determination of different parameters,

Table 4. The sums of square errors for transmissivity and storage
coefficient in the near-steady condition and transient condition by
methods 1 and 5

Method Transmissivity Storage coefficient  Condition

1 0-341098E-3 0-4458875 Near-steady
3 0-139542E.3 (0-232971E-2 Near-steady
1 0-166410E-3 0-112158 Transient
5 0-491881E-6 0-109948E-3 Transient

5.4 Noise reduction

From Tables I and 3, it is apparent that all the methods
examined are very sensitive to noise level. Parameters
may be better estimated if noise levels can be reduced,
but this intrinsically invelves data smoothing and
therefore data loss. For the one-dimensional example,
using the coefficients of eqn (28), noise within the head
record can be effectively filtered. An example for noise
levels equal to 20% is illustrated in Figs 6, 7, 8 and 9 for
time ¢ = 40, 80, 130 and 180 relative units, respectively,
using eqn {29). Phase shift and scale change may be
amended through:

¢ =o+0g (30)

where e is the phase shift, 5 is the gain factor, which can
be determined by comparing the original data with the
filtered data, g are the fillered data and g are the
modified data,

From Figs 6. 7. 8 and 9, it is apparent thal the high
frequency noise can be filtered out, resulting in smoother
distribution profiles. Similarly, resulis can be improved
by increasing the number of time steps.

Using the filtered record, and applying the same
procedures and methods as previous, improved resuits
were obtained as documented in Table 5. Comparing
Table 3 with Table 5, it is apparent that by methods 1. 4
and 5 the square errors are reduced for the high noise
ratio filtered data, but using methods 2 and 3 degrades
the results.

Square error magnitudes are largely dependent on the
choice of filier parameter. For a low pass digital fiiter. a

7
64 == Noisy data
'§ wwssg—  FBilkered data
i
57 t=40
4 ¥ T ¥ T T T
0.0 1.0 20 320 4.0 50 6.0

X

Fig. 6. The head distributions for noisy data and filtered data
at time 7 = 40.
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Fig. 7. The head distributions for noisy data and fltered data
at time ¢ = 80.

4
61 MNoise data
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0
-
= 1=130
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Fig. 8. The head distributions for noisy data and filtered dala
at time + = 130.

small number N should be chosen, and the cut-off
frequency parameter CF may be determined by trial-
and-error. Figure 10 shows the relation beiween the
square error and CF values for the five different
methods.

[1 is apparent that small CF values yield small square
error magnitudes and the sguare error increases for
farger CF magnitudes. It is also noted that for some
methods the error increases irregularly with CF as
apparent for methods !, 2 and 4. Comparing all
methods, method 5 appears most predictable and gives
a small error when the CF value is small and method 4 is
not particularly robust. Accordingly, method 5 is the
best choice when this method is combined with a digital
filter since the square error is small and relatively stable
with increase of CF.

5.5 Two-dimensional example

A similar problem to that attempted by Carrera and

7
6-
——e——  Noise data
51 m—t—  Filiered data
B
= 4
= 1= 150
3-

2 v T v v v T
00 1.0 20 3.0 40 50 &0
x

Fig. 9. The head distributions for noisy data and filtered data
al time £ = 180,

Table 5. The sums of square errors using digital filter to reduce
the noise levels for different methods

Method 5% noise 10% noise 20% noise
1 0-51366E-1 0:17623 066695
2 (33452 0:59663 1:59750
3 0-43390E-1 0-16797 0-80764
4 0-40231E-1 015399 0-77563
5 0-47641E-1 §-24670 1-804381

E
E
w
&
a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 10. The relationship between square error and cut-off
frequency CF for different methods.

Neuman' is used as an example. The idealized aquifer is
square with an area of 36 km*. The boundary conditions
and pumping wells are shown in Fig. 11, For simplicity,
no areal recharge is considered. The whole flow region is
divided into 36 square elements {6 x 6 mesh) for
forward computation of the head distribution.

In the inverse solution, only a 3 x 3 mesh is used. A
four-node constant element is used for both forward and
inverse solutions. The head distribution at steady state is
computed using eqn (7) and is shown in Fig. 12 for
1 = 0. The transient condition is computed using eqn (9)
with a tme step of 1 day. The contours of head,
computed at ¢ from 0 to 10 days, are shown in Fig. 12
for t =2, 4, 6 and 10 days. A total of 10 sieps arc
considered and the computed heads are used for
parameter estimation based on a 3 x 3 mesh (nine
elements). The relative error of each zone for different
methods is shown in Table 6. It is apparent that the
relative errors in zones 5, 6 and 9 are very large and
those in the remaining zones are quite small. From Fig.
12, it is noted that the variation of head gradients in
zones 5 and 6 is very small. The reason f{or this
correspondence between high error magnitudes and
small gradient is that small magnitude terms in matrix
H, formed by head gradients, result in a singularity in
eqn (9). The error in zone 6 is due to an inaccurate head
distribution around the well and may be improved by a
larzer element density,

The sum of square relative errors for cach method are
shown at the bottom of Table 6. Comparing them, it is
apparent that methods 3, 4 and 5 work best. Unfortlu-
nately, method 1 gives a very large square error,
although it performs well for the noise-free case. If a
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Fig. 11. Confined aquifer. {a) Geometry and boundary
condition {the discharge and recharge in m¥/day); (b)
transmissivity per zene in m-/day.

fine mesh is used in forward solution, this method may
give better results.

6 CONCLUSIONS

Although major comparisons are completed for a
simplified one-dimensional problem, they illustrate the
principal advantages and disadvantages of the methods
presented. The following points may be drawn from the
computations and comparisons:

(1) For the noise-free case. a direct solution based on
two subsequent data sets may be used for
parameter estimation in the nonsteady state.

1= 4 days 1= 6 days

1= 10 days

Fig. 12. The head distribution for the steady (7 = 0) and the
nonsteady state (1 =2, 4, 6 and 50 days).

However, different noise levels affect the accu-
racy of the estimated paramecters.

(2) The various methods perform differently, and to
some degree unprediclably, at variable noise
levels. No definitive choice is apparent although
the least squares method and the average method
perform well at low noise levels, and the
integration method based on the trapezoidal rule
may be more suitable for higher noise levels.

(3) All methods presented are capable of being
expanded to determine storage coeflicients and
areal discharge. However, the accuracy with

Table 6. The relative errors and sum of square relative error between the real and computed parameter for different methods

Zone Method 1 Method 2 Method 3 Method 4 Method 3
4 0-0140 0-0167 00139 0-0145 00140
3 0-i89 0196 G-17 0-169 0172
6 2-496 0-403 0-587 0-625 0-307
7 0-009 0051 00l 0012 0011
8 0-004 00860 0-036 0-031 0018
9 0-234 0-928 0248 0234 0:254

e 6316 [-805 0436 0-476 0-351
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which different parameter sets may be determined
depends on the magnitudes of storage coefficient
relative to lime-step resolation in the data set.
Using a filler to reduce the noise level is an
acceptable procedure, and a small number N and
a small cut-ofl frequency should be used (in this
work, & = 2 was used). The comparison shows
that the least squares methed combined with a
digital filter gives superior results.

A two-dimensional example shows that conclu-
sions drawn from the one-dimensional example
may largely be applied to two-dimensional
problems. Accurate recording of the head dis-
tribution improves the fidelity of the resulting
parameter estimation,
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