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Summary

A phenomenological model is developed to represent failure in intact media as a
consequence of shear-band formation. A stepped arrangement of connected flaws
is assumed to be distributed within a planar shear-band inclined with respect to the
applied deviatoric stresses. The flaws within the shear-band isolate a series of
wedges that transmit tractions across the pre-failure zone. Gross stress transmission
is controlled by static equilibrium with spatial stress inhomogeneity modulated
through the distribution of flaws in the continuum adjacent to the shear-band.
Under increased confinement, flaw closure beyond the shear-band resulis in a more
homogeneous transmission of normal tractions across the failure plane. This stress
dependent transition is based on physical arguments, related to mean flaw closure,
to yield a distribution coefficient, ¥, that is controlied by macroscopic flaw rigidity,
B. The model is able to replicate the power law dependency of ultimate strength
with confining stress that is commonly observed. The model is specifically cali-
brated against experimental data for Daye marble. The phenomenological coeffi-
cients describing the failure process appear as material constants.

1. Introduction

Failure in brittle rock is initiated by the extension of existing microcracks,
creation of fresh crack surface area, and consequent dissipation of energy.
The onset of microcrack extension, as predicted throngh fracture
mechanics, indicates the development of zones of irreversible deformation
within the body and may be viewed as a precursor to failure. Peak strength,
however, is only reached as a later result of crack coalescence on a macro-
scopic scale. Consequently, the prediction of flaw coalescence into a
continuous shear-band is a critical factor in determining ultimate failure of
intact rock or rock masses. A wealth of laboratory results indicate the
control that microcracks exert on macroscopic failure of brittle materiais
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originating with the seminal deductions of Griffith (1921, 1924). Subse-
quently, many investipators have addressed the strain rate and stress level
sensitivity of microcrack development and propagation to indicate that
macrofractures result from the interaction and coalescence of microcracks
rather than the existence of a single pre-existing discontinuity (Brace and
Bombolakis, 1963; Bombolakis, 1968 Hoek and Bieniawski, 1965; Bieni-
awski, 1966).

Investigating the compressive behaviour of Westerly granite, Wu and
Thomsen (1975) identified three distinct stages of progressive failure.
Initially, pre-existing cracks are either closed or opened, depending on
inclination to the deviatoric stresses. Cracks near-perpendicular to the
major stress axis are closed and those near-parallel are opened. As the
principal stress exceeds half of the failure stress, microcracks propagate in
the major principal direction (Brace et al., 1966; Peng and Johnson, 1972;
Tapponier and Brace, 1976; Kranz, 1979 a,b; Wang, 1982) forming an
inclined zone of intensive deformation (Peng and Johnson, 1972; Wang,
1982; Dey and Wang, 1981; Hallbauer et al., 1973; Scholz, 1968 a,b; Liu
and Livanos, 1976). With further compression, the cracks anastomose as a
result of interaction in their respective induced stress fields.

Both en échelon and en passant microcrack geometries have been
observed in overlap (Kranz, 1979 a,b) as a result of crack-crack and
crack-pore interactions in granite. Excepting the overlapped crack-tip
regions, the differences between the two types of microcracks disappear
following coalescence as a serrated shear plane develops with additional
loading. Swain et al. (1974) show how an en passant interaction can even-
tually produce a characteristic serrated crack with en échelon appearance.
The anastomosing of microcracks is approximately perpendicular to
maximum compression {Nesetova and Lajtai, 1973). Fonseka et al. (1985)
use both scanning electron microscope and microseismic observations to
study the growth of cracks in samples at various compressional loads up to
failure and determined similar microcrack interactions. Close to the
ultimate failure stress, this fracture plane can grow by stepwise joining of
existing microcrack tips to form much larger serrated cracks (Kranz,
1979b; Fonseka et al., 1985). Similar studies (Bombolakis, 1963; Bieni-
awski, 1966) using crack arrays show that, provided adjacent cracks are in
close proximity, cracks coalesce in both the direction of greatest stress and
in the direction perpendicular to it. These microcracks are related to point
contacts between grains {Kranz, 197%a; Batzle et al.,, 1979) and represent
regions of isolated stress concentration. ,

Numerous researchers have postulated mechanisms and developed
criteria for failure. Wiebols and Cook (1968) suggest that the failure occurs
when the inelastic shear strain of macrocracks (sliding in the manner
proposed by McClintock and Walsh (1962)) reaches some critical value.
Brady (1969 a,b) proposed that failure occurs when the total volumetric
strain due to microcracks reaches some critical value. Lundborg (1974)
proposed a statistical theory based on subdividing a rock into many
regions with a distribution of strengths.
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Peng and Johnson (1972) and Janach (1977) use a small beam to
model the region between two axially-oriented microcracks. Dey and Wang
{1981) propose the inhomogeneity model to provide an explanation based
on a mismatch in elastic properties of neighbouring grains and the wedging
process caused by a point contact between grains.

In this paper a simple phenomenoclogical model is presented to
incorporate many of the observed failure phenomena described above.
Specifically, failure is described through formation of a diagonal
shear-band comprising an inclined serrated plane that will disrupt the
previous near-homogeneous stress state within the sample and describe
the localization process. Evidence of shear band formation is commonly
apparent following brittle failure through the presence of an undulating
fracture plane supporting a particulate coating. It is suggested in the
following that the thickness of the developing shear-band is of the
order of the grain or crystal diameter or similar dimension corre-
sponding to the intergranular flaw size. Despite the fine scale of this
feature, its presence is sufficient to significantly modify the stress
distribution in the sample in a stress dependent manner. The stress
dependent strength of the solid follows directly from the physical
argument requiring that the homogeneity of stress t{ransmission is
controlled by closure of preexisting flaws. The correspondence with
laboratory data suggests that the phenomenological model provides a
plausible explanation of the failure process in the absence of more
detailed microscopic failure data.

2. Wedge Model

There is ample evidence {Tapponnier and Brace, 1976; Hallbauer,
1973) that the process which determines the strength of brittle rocks under
triaxial compression is not of a shear type. Failure begins following the
collapse of microstructure that has been previously weakened by predomi-
nantly axial microcracking. The collapse results from structural instability
concentrated along a plane which, in subsequent stages, becomes a fault at
low angle to the major principal compression. Once formed, shear motion
induces a complex loading of the surrounding rock.

When stresses are close to ultimate rock strength, cracks paraliel and
perpendicular to the major principal stress direction deform and extend to
form a serrated failure plane connected through crack tips. This
arrangement is iHustrated as a shear-band in Fig. 1 from which a single
free-body wedge is isolated in Fig. 2. The wedge geometry is loaded only at
the tips of connected cracks. Assuming that P, and P are respectively
normal and shear tractions on a wedge element, the radial stress
distribution (e,) within this wedge can be expressed (Timoshenko and
Goodier, 1970) as
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g, = (K, Pysin 0+ K, P,cos 8)(1/r) 4}

where r = radius of interest, # = polar angle relative to the macroscopic
shear-band, K,=4/(x+2), and K,=4/(x —2).

Fig. 2. Free-body wedge geometry from the serrated failure plane

A single isolated transverse or axial crack does not affect the stability
of the entire rock structure. Ultimate failure results from the mutual inter-
action of critically oriented and located cracks. This interaction may
contribute to the formation of a diagonal array of wedge free-bodies as
previously illustrated in Fig. 1. In reality, the wedge elements will not be of
uniform size, but will conform to some distribution possessing a mean size.
If a specimen is separated along the serrated microcracks and assuming: (i)
that m wedge elements exist within a unit length along the potential failure
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plane; (ii) that internal stresses are concentrated only at the tips of wedge
elements, as illustrated in Fig. 3 and; (iii) that the medium beyond the
plane is a uniform continuum, the conditions for equilibrium can be
expressed by the Egs.

1 1
2mP = — (oy + 03) + 5 {0y — 03) cos 20 (2a)

2mbPr=— (o, — oy)sin 24, (2b)

2|

where (o, o3} are the major and minor principal stresses and @ is the angle
of a potential failure plane.

Fig. 3. Traction at the connected points of the serrated microcracks

The medium exterior to the “failure plane” is not a uniform
continuum with the result that local stress inhomogeneities, caused by
microcracks and minerals of differing elastic modulii, must be accommo-
dated in a statistically equivalent manner. The traction distribution over
the tips of wedge elements in Fig. 3 will be redistributed by both micro-
cracks and modulii inhomogeneities beyond the failure zone (Tapponnier
and Brace, 1976: Kranz 1979a; Batzle etal, 1979). As a result, the
distribution of the resultant traction will be non-uniform.

It is suggested that macroscopic redistribution of stresses will
accompany small deformations over the failure zone. Small shear deforma-
tions will precipitate a homogenization of shear stresses (P) along the
potential failure plane but normal traction magnitudes will remain osten-
sibly unchanged and inhomogeneous as a result of the flaw distribution
exterior to the failure zone. To accommodate this phenomenon, the coeffi-
cient of stress inhomogeneity, W, is proposed to represent the controlling
influence of “higher than average” normal tractions (F) on the ensuing
failure process. The coefficient W is bounded by zero and unity and phys-
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ically represents the proportion of wedge apices transferring normal trac-
tions across the failure zone, Consequently Eq. (2) may be rewritten as

1 1
2mWP =5 (ov+ 01 + (o — o) cos 2P (3a)

2mPr= (o, ~ o;}sin 2P {(3b)

tof

2.1 Inhomogeneous Stresses

As discussed previously, the value of W is generally a function of the
density and closure of microcracks exterior to the failure zone and the
modulus contrast of the component minerals. The local stress distribution
is extremely complex and consequently analytical description of the stress
inhomogeneity coefficient W, at microscale, is impossible. Alternatively, a
mixed analytical and empirical approach may be used to determine W
directly. For a specific rock or material, the initial microcrack density and
modulus variability are fixed, but unknown. In the course of loading, the
slight microcracking that occurs beyond the potential failure plane is
neglected and it is assumed that minerals of different elastic moduli will be
unchanged by the loading process. Consequently, changes in the coeffi-
cient W depend entirely on microcrack closure exterior to the failure zone.
The coefficient W may therefore be divided into two parts: the {irst part
(W) is a function of inherent properties of a rock (i. e., the minerals and
microcrack density) and is not related to the loading process. The
magnitude of W] can be indirectly determined from strength test data that
will be discussed later. The second part (W],) is a {unction of the micro-
crack closure immediately prior to the macrofailure of the rock. W, is
affected only by the imposed stress state surrounding a microcrack and
may be determined from consideration of elastic (pre-failure) crack
closure. From the preceding, the stress inhomogeneity coefficient W can be
specified by the relation

W= W, + W,. )

IT the elliptic flaw identified in Fig. 4 is used to represent a microcrack, it
can be assumed that W, is proportional to mean microcrack closure as:

Wy = h(Ab./b) (5)

where /7 is a constant and Ab,, is an average value of the microcrack
closure at the ends of minor axis, b The modulating parameter W varies
between O and 1. If W="1, the parts beyond the potential failure plane
represent a uniform continuum and each tip of the wedge elements is
subject to a normal traction P. In the special case of W==0, the appropriate
stress state is uniaxial tensile stress, as will be discussed later. The special
case of W =0 can be considered as an extension of the wedge model.
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Fig. 4. A flat eiliptical hole

For the idealized elliptical flaw within an uniaxial stress field (g), illus-
trated in Fig. 4, closure (v) is given by

v=Rg(l—u’)(1+n—2cos2al/E, (6)

where R=(a+ b)/2 and n=(a-b)/(a+b), as described in
Appendix 1. Here, a and b are the flaw semi-major and semi-minor axes,
respectively, and p is the Poisson ratio. Of particular interest is the
displacement at an angle o= 7/2 to the x axis representing closure across
the minor axis. Superposition enables a general stress state to be repre-
sented, as illustrated in Fig. 5, to yield closure (Ab) due to the principal
stress state as

Ab=(1—u)[2a+b)o, — boJ/E. (N
{” |?
T T

Fig. 5. Superposition of stress components

Assuming that microcracks beyond the potential failure zone are both
randomly located and continuously distributed, the average closure Ab,,,
may be evaluated. Defining the angle between the major principal stress o
and o, of Fig.5 as & and substituting the major and minor principal
stresses, the average displacement A b, is then
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2

Aby=5= | AbdS = a(l - 12 (0, + o)/E ®)
- {t
Substitution of Eq. (8) into Eq. (5) and Eq. (4) yields
W= B(o,+ o)+ W, )

where the parameter B = ha (1 — u*)/(Eb) in which & is inversely propor-
tional to microcrack density. Direct prediction of the statistical constants,
i, a, and b of the parameter B may be difficult. Fortunately, B and W, can
be indirectly determined by rock strength data following introduction of
another expression for W, later.

Following full microcrack closure under external compressive loading,
the material beyond the potential failure plane is presumed to become a
continuum as W approaches unity. For this reason, the inhomogeneous
stress coefficient (W) assumes one of two possible magnitudes as deter-
mined by the prevailing stress regime. These are given as

w | Blov+t o)+ W, - W/B=o +0:=(1- W)/B (9a)
R a,+ oy > (1— W,)/B (9b)

2.2 Criterion for the Formation of a Potential Failure Plane

A criterion must be applied to the microscopic or macroscopic stress
regime to define formation of a failure plane. Previously, Janach (1977)
assumed that the concentration of elements along a diagonal failure plane
minimize the total dilative work for the specific confining stress o;. Alter-
natively, Woronow (1975) proposed that the local major principal stress o
at failure should reach a minimum in the development of the failure plane
and was able to corroborate this behaviour with experimental results. An
alternative Woronow’s macroscopic condition is posed at the microscopic
scale in this work. Woronow's condition for a failure plane may be
extended to the microscale by stating that, rhe formation of the failure plane
will minimize the tensile stress o, on the edge of a wedge element.

Of particular interest, therefore, are the tensile stresses o, on the edge
of a wedge element. As illustrated in Figs. 2 and 3, all stress components
are in assumed positive directions so that the edge at #=3n/4 is poten-
tially under a tensile stress state. At the point contacts, of wedge apices,
tensile microfailure may occur allowing Eq. (1) to be rewritten as

o, = (K P — K2 PY/(r}2) (10)
Combining Eq. (3a) and (3b) with Eq. (10), yields

Kl [ a, + o7} Oy —
212 rmw 2 2

KW o, — 0y .
- K ( 3 51n20’))] (11

T3
cos2 @

o,
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Evaluation of derivatives through second order (see Appendix 2) for
Eg. (11} provides an explanation of the preferred formation of a potential
failure plane. Setting do,/d @ = 0, the result becomes

tg2®=—K,W/K, 0sWs1 (12)
or
W=—-Ktg2d/K, 0<W=<1 (13)

The preferred angle of a potential failure plane is given by further
discussion of Eqg. (12) in Appendix 2 as

(]):JT/?.—E, (‘14)

where ¢ is Yharctg (K; W/K)) (< n/4). The tensile stress o, at this angle
proves to be a minimum.

According to Eq.{(13), evaluation of the microconstants in B (of
Eq. (9a) such as h, a, b, etc.) may be avoided. The two constants B and W,
may be determined from a minimum of two triaxial tests exhibiting
different deviatoric stresses at failure.

3. Failure Criterion

The empirical Mohr failure criterion implicitly accommodates the variety
of microscopic phenomena described previously. It does not, however,
enable a prediction of ultimate strength to be made from knowledge of
physical parameters such as flaw density. Fortunately, the Mohr criterion
does provide a foundation from which a criterion may be theoretically
extended. Considering the stress space of Fig. 6, the partial derivatives
E Ta/éay and Fo/Foy are related as (Vutukuri et al., 1974)

2o, 1
e, 1 2oy
LR as)
&y tngﬁ' " fafo -
- 50’3

where 1, and o, are, respectively, shear and normal stresses on a failure
plane. Clearly, 1, is 2 m P, and o, 1s 2 mWh,.

Assuming that at failure, the major principal stress is o; and the minor
principal stress is oy, then according to Fig. 6

o+ o : , o — o3\’
(—',)—-—3——0"(;)) + 15 = (W) (16}

Taking the derivative of ¢, with respect to & from Eq.(16) yields the
solution for o, as
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Fig. 6. Geometry ol a Mohr envelope

o) — O
Op = 05 + —gé‘“i“ an
o
Substituting Eq. (17) into Eq. (16), 1, is given by
oy — o3 { Fo 17?2
o™ 2, ( £0, ) (18)

el ol
&0

According to Eqgs. (17) and (18) and the triangle AHB in Fig. 6, tg @ can be
represented as

T, 2 1/2
tg = —2— — (f"‘) (19)

Tp — Oy (T3
and the derivative of the Mohr envelope can be evaluated from

FTe

— ¢ _ ' D)

7o, ~ BB 20)
Because 2@ = ' +n/2 and tg ' = — ctg 2 ¥ with

tg 2G0 = 2tg /(1 — tg* ),

combining Egs. (19} and (20) recovers Eq. (15). Using Eq. (13) and the defi-
nition of (9a), we have

te2@ =4(oc, 4+ g, -+ W/B)/2, 2n

where 4 = —2 K, B/K,. Consideration of Egs. (21) and (15) enables the
differential equation to be rewritten as

do \V* A4 W, d oy
5 —1 = o - " 237
,.((163) + 5 (a1+cr3+ B)(dor; 1 22

inn which the full derivative is used since the extra condition of Eq. (21) is
involved to remove 7, and o, from Eq. (22). As W/B is constant
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W,
d(fﬂ**g‘) _ds  do
dG:; a dU} o dCT:;

in which &, = oy + W,/ B. Therefore, Eq. (22) becomes

da\'"? 4 dé
2( ‘) +—2—(al+cr;)(d—a‘-1)=o. (23)

dos 3

Equation (23} is suitable for the stress regime corresponding to relation
(9a). In the case of (9b), Eq. (13) can be rewritten as tg 2 @% = — K,/K, in
which the notation € denotes the failure angle at o, + oy = (1 — W))/B.
Hence, Eq. {15) is defined as

d o V7 . [ 4o _
2(0,6) +tg2 @ (—da —«1) =0. (24)

3 3

The solutions to Egs. (23) and (24) are derived in Appendix3 and
summarized as follows:

1 < = W 3 1 W
”;;ln[[/T+zt-(o*,,,+!-V,/ZB)]--%-A(rf,,,+i$’,/28)]—ﬁ+a,, ~3F 50,5 TH
- (25a)
- cos2° g, + C, . 1-— 1,
m s ”’ 2B
(25b}

where, following standard notation, o, = (0, + 03)/2; Tua={(0;— )72,
and C= 12 + cos 2@ (1~ W,)/2B) in which 7, is the value of Eq.
(25a) at g, = (1 — W))/2 B. Tensile stress g, in the criterion can be approxi-
mated by Eqg.(30), given subsequently. Equations {A.3.15) and (A.3.16)
from Appendix 3 may be used to calculate gy and o at failure. Parameters,
A, B, and W} in Eqg. (252) may be evaluated using Eq. (9a) requiring that
data from only two independent strength tests be available.

4. Experimental Data

Parameters, B, W, and 4 must be evaluated to calibrate the phenomeno-
logical model. Results from a series of triaxial tests on Daye marble are
available, as presented in Table 1. All samples are 5 cm in diameter and
11 cm in height. For convenience, one set of strength data is chosen {from a
uniaxial tensile test: o,=0, oy= — g, (which is approximated by Eq. (30))
and ¢ =7n/2; and an additional set of strength data is obtained for an
auxiliary triaxial strength test: o = maximum compressive strength, o
= confining stress, and @* = failure angle. The star superscript denotes a
measured value. Substituting into Eq. (9a) and solving the appropriate
equation, B and W] are respectively expressed by
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B=W¥(ok+ o+ 0), W= Bg, (26)
where W* = — K, tg 2 0*/K,. Similarly, the parameter 4 is given by
A= 2K B/K,=2tg2@%/ (o} + of + 5,). (27

Table 1. Ultimate compressive strength as a function of
confining stress for Daye marble

Confiring stress Ultimate compressive  Failure angles

strength

{kg/cm?) {kg/cm?) {degree)
0 962 —
100 1454 67
200 1934 63
300 2329 60
400 2464 58
500 2724 36
600 3080 52
700 3487 52
800 3536 50
900 3676 49
1000 4027 48

To establish the validity of the shear-band criterion, the following
strength data from Table1 are wused as basic parameters:
of = 1454 (kg/cm?),  of =100 (kg/cm?), and @*=67 (degrees).
Combining this with any one of the remaining data sets enables the full
failure envelope to be determined as illustrated in Fig. 7. For o <700
(kg/cm?®), an excellent correlation is obtained with the measured data
where strengths are determined from Eqgs. {A.3.15) and (A.3.16).
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5. Summary and Conclusions

The preceding discussion illusirates several interesting points, notwith-
standing the wedge model, that suggest the appropriateness of the model in
simulating a realistic failure mechanism for brittle rock. These are
summarized in the following:

3.1 Macroscopic Flaw Rigidity

Substituting Eq. (26) into Eq. (9a) and rearranging yields
Wi(o, 4+ o3+ o) = W¥/(of + g} + 0,)= B. 28)

Thus, Eq. (28) is only satisfied with 0< W or W* <1 where the ratio of
W/{oy + o3 + ,) is the constant B and is unrelated to stress state at failure.
W* may be evaluated through Eg.(13). In the special case of W¥ =20
(uniaxial tensile stress), B is the limit value of Eq. (28) by taking
. W
al;inm t+o P

as W* approaches zero. By definition, the dimensions of B are [M~' LT7]
representing an equivalent modulus of rigidity for the flaw distribution.
The constant B represents the rigidity of flaw deformation in a statistical
sense. For a specified rock, B should be constant. When o, <700 kg/cm?,
W* is smaller than unity and the fissure rigidity B is approximately
constant with confining stress at failure as determined for Daye marble in
Fig. 8.
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Fig. 8. Profile of fissure rigidity modulus 5 for Daye marble
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5.2 Relation of Failure Angle & and Stresses at Failure

Failure stresses and angle of failure are related. Combining Egs. (13) and
(26) with Eqgs. (9a) and (14) yields

& =

— o, (2%a)

|

1 A
- 7arctg{——7(al+ol+a,)} , O =0t =

1 K,
-3 arctg ( K, )
Eguations (29a) and (29b) explain why failure angle & changes contin-
uously with confining stress o.. As confining pressure ¢, increases (such
that ¢, + o; = 1/B — g, at failure) the coefficient of stress inhomogeneity,
W, increases from a positive constant less than unity to unity. Correspon-
dingly, the appropriate failure angle @ defined in Eq. (29a) decreases to
@ = 7/2 ~ 1/2 arctg (K-/K,) = 51° as the lower limit. Experimental data
closely fit this theoretical prediction further suggesting the appropriateness
of the physical model. Macroscopic failure angles predicted from the
theory are compared with experimental results for Daye marble in Fig. 9.

For 0y <700 kg/cm? there is close correspondence between theory and
experiment with a slight degradation of fit with increasing confinement.

A1
B
1
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» O-§+O-3> "B—_O}. (29b)
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Fig. 9. Relation of failure angle & and confining stress o for Daye marble

5.3 Ratio o/ g,

The ratio of uniaxial compressive strength o, to uniaxial tensile strength o,
reportedly varies in the range of 10 to 50 (Vutukuri et al.,, 1974). The ratios
predicted by current failure criteria are normally Jower than observed and
material type independent. For example, o,/0, = 5.8 by the Coulomb
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criterion, o./0,=8 by the Griffith criterion, and o./g, = 10 by the
McClintock and Walsh criterion (Vutukuri et al,, 1974).

From either of Egs. (A.3.7) or (A.3.8) in Appendix 3, the ratio may be
obtained by setting oy, = g = g,, oy = ¢f =0, and @ = @* = @_where @,
is the angle of failure under uniaxial compression. Noting Eq. (27), Eq.
{A.3.7) becomes,

ag. + o,

O, = m [tg2®. +In(tg 2D —sec2d),

which upon further rearrangement becomes
G, /o, = {1+ Dy (1~ D) (30)

where D =ctg 2@, In (ig 2 &, — sec 2 @,). Eq. (30) indicates that the ratio
o,/ o, may differ with failure angles in uniaxial compression. The prediction
appears to reasonably fit data. Although rocks often fail by splitting under
conditions with very low or no confining pressure (Fairhurst and Cook,
1966), Woronow (1975) determines the preferred failure angle of brittle
rock through use of prismatic specimens notched at varying inclinations
and loaded to failure. Despite predicting the existence of a critical failure
angle @, in these experiments, limitations within conventional experimental
conditions preclude direct measurement. However, using Eqs. (28) and
(13), we may compute @. [rom

tg 2. =tg 2% (o, + g)/{af + of + 0),
=tg 2 P o (o} + of) 31

in which o, is omitted because o, » o, and ¢ + o » . If failure under
uniaxial compression occurs on a plane inclined between 60° 757, then
from Eq. (31), the ratio 0./, is in the range of 7 to 40. Intuitively, the larger
the flaw density within brittle rocks, the lower the uniaxial tensile strength.
Conversely, the uniaxial compressive strength is little affected. Therefore,
the ratio o./g, increases with increased initial microcrack density. In the
present study, the stress inhomogeneity coefficient W is inversely propor-
tional to original microcrack density (see the definition of W, in Eq. (9a))
whereas the computed @, is inversely proportional to W (see Eq. (12)). As
microcrack density increases, the predicted ratio ¢./g, of Eq. (30) also
increases.

Peng and Johnson (1972) studied the crack distribution in Chelmsford
granite and its effect on uniaxial tensile strength. With the flaws oriented
parallel to the uniaxial direction, the tensile and compressive strengths
were respectively 10 and 170 MPa. With a ninety degree rotation, the
tensile failure stress is lowered to 5.9 MPa while the compressive strength
remains unaltered at 182 MPa. Correspondingly, the o./0, ratios range
between 17 and 31 as a result of flaw orientation. Ultilizing the available
strength data for Daye marble, the predicted o, /¢, ratio for ;=100 kg/cm?
is 32, which is much higher than the spurious magnitudes calculated by
other criteria.
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The strength criterion is based upon a phenomenological model that
considers failure to occur along a serrated shear plane. No prior
assumption is made regarding the ultimate form of the failure envelope.
Rather, the stress dependent nature of the failure process falls naturally
from the analysis through consideration of the statical stress state within
the failure zone. The ability to naturally replicate a power law failure
envelope through phenomenological arguments alone defines the obvious
utility of the approach. Although applied to failure of intact material in the
previous, the method is equally applicable to discontinua.

Appendix 1

Solution for closure at the ends of the minor axis of an elliptical cavity, as
illustrated in Fig. 4, is available (eg. Sokolinbkoff, 1961) as

p= —%‘3—(1—,“2)(1+n—2cosza), (A.1T)

where v is displacement in the y direction (Fig. 4), R is mean radius of the
ellipse, R = (a + b)/2, n is the ellipticity, n = (a — b)/(a + b), g is the
magnitude of uniaxial stress acting at an angle & to the major principal axis
and the elastic constants are modulus, E, and Poisson ratio, u.

The four component stress states that apply are defined as:

g=0: a=0 (H
g=0;: =7 @)
qmr;a=§ 3)
g=-1; a=—7. )

Superposition of stress states yields total displacement Ab at the
minor axis on the boundary as

Ab = vy + vy + vy + 1) {A1.2)

(-

(A.1.3)
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Appendix 2
The derivative of Eq. (11) is
do, Koy~ @) [ . ¢
ekl .t 2P 24 ). 21
T . 15-_ W (sm D+ } cos 1’) {A.21)

Let do./d @ = 0, and the result becomes
tg 2@ = — (K, W)yK,. (A2.2

Setting 2 ¢ = arctg [(K: W)/K|] and noting that 0 £ K, W/K, < o, we then
have ¢ < /4. Eq. {A.2.2) has two solutions for the extreme points as

P=x/2—gand P=—¢
Using Eq. {A.2.2), the second order derivative of (11) yields

d’ o, K (o, — o)
LA A23
d @ ]/2_ rmt¥cos 2 ( :

and two cases for the solution of Eq. (A.2.2) must be considered to evaluate
Eq. (A.2.3)

d: a, [{3 (0-1 - O-x)

»=2— ¢ . : A24
dd? )2 rmWeos2e ( )
d* o, K (o, — o3

D= —¢g e <0 A25
d @? V2 rmWeos 2¢ ( )

Consequently, Eq. (A.2.4) suggests that o, of Eq. (11) reaches a min-
imum value at @ = 7/2 — . Substituting Eq. (A.2.2) into Eq. (11) and rear-
ranging allows the stress o, on the edge of wedge element to be determined

_ K (g + o3) g — O;
' 42 rmw (oy+ a))cos 2@ [

(A.2.6)

From Fig. 6, the line segments O’ and O’A can be respectively evaluated
as 0" Q= —cos2 @(o,+ o)/2and 0" 4 = (g, — 0:)/2.

Because @ = (1/2) — £ and ¢ < z/4, the function cos 2 @ is negative
and 0'Q < 04, ie

(o, - o)/ ({(oh+ oy)cos 2d) < —1, (A.2.T)

Combining Egs. (A.2.7) and (A.2.6) vyields (0)oen..<0. Then,
@ = (n/2) — £1s the minimum solution for ¢,.. Moreover, from Eg. (A.2.2)
stress inhomogeneity coefficient W may be expressed as

W = - K] tg 2 (])/K:. (A.E.S)
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Appendix 3

In accordance with conventional notation, let &=y, g,=x, and
dg/doy=y', allowing the differential relationship of Eq.(23) to be
expressed as

1
2}/}’_’+-2—A(y+x)(y’—1)=0. (A3.1)
Rearranging Eqg. (A.3.1) for x and letting y’ = g, we obtain
x=—y—4)g/(4(g - 1), (A3.2)
Differentiation of (A.3.2) vields
5
1__20+g dg (A33)
g AVg(g-17 4y
allowing dy to be determined as
2Ve
dy=—=t8 _ 4g A34
Using the notation VE = tand dg=2 iy, integration of Eq. (A.3.4) yields
21 1 t—1
y= - m + “:&"ln (T:}-T) -+ Cp (A.?).S)
Combining Eqgs. (A.3.2) and (A.3.5), we have
21 1 r—1
_\=—m——jln(r+l)—cl. (A36}

Observing from Eq.(19) that 2tg®/(1-tg?@)=tg2@ and
(g @ —-(g D+ 1D =1g2@ —sec2 @ Egs. (A.3.5) and (A.3.6) can be re-
arranged to give

W,
o= —[tg2® +In(tg 2@ — sec2P)] - ?* +C (A3

1
4

0‘3=%{tgztp—ln(tg?,d)—seczcb)]mcl. {A.3.8)
For failure under uniaxial tension, the specimen characteristics are given
by 0:=0, 0;=—0,, and @ = x/2. Substituting these data into Eqs. (A.3.7)
or (A.3.8), we obtain (,=¢,. It is evident that Egs. (A.3.7) and {(A.3.8} can
be transformed into

1 idl
Cn= 18 2@~ B (A.3.9)
1 W
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in which the netation o, = (o, + 03)/2 and T, = (¢, — 03)/2 is used. The
criterion of Eq. (A.3.10) is valid over a limited range of o, (see Eq. (9a)).
From Egs. (A.3.9) and (A.3.10), the expression for the failure criterion is

=L 1+ A? +—H—/*—2+A +LV‘— A
Tmux - A n Gm 2 B G’m 2 B 2 B O-.'

(A3.17)
Similarl ting that L _ 46 " Eq. (24) becomes
imilarly, noting tha do, — do, =y BQ.{< o]

21y +tg2@° (' —1)=0. (A.3.12)

The dual solutions for the quadratic relationship (A.3.12) are

— 2+ V4 +4atg?2 @°
Wy h= 5 —tg @ >0

2tg2 @b
- —2—j4+4tg2 Pt 0
Wy )= 2ig2 B = —ctg @° < 0.

Therefore, (J¥’ ), is the solution for Eq. (A.3.12), i. e, y' =tg* @° After
integrating y’ =tg? @°, results can be inverted to give

0y = tgz @0 a; + C (A.3.13)
Rearranging Eq. (A.3.13), we obtain
Tmay = —COS 240 G + C, {A»3.l4)

The constant C can be computed from the condition that 1, = 72, at o,
={(1— W)/2Bin Eq. (A.3.10):

1- W,
= 7t 0
C=r1,,+cos2q 2B

(A.3.14a)

For convenience a similar expression for the failure criterion in
Eq. (A.3.13) may be obtained from Eq. (A.3.11) as

O-E = Gm + Tmux (A.3.15)
O3 = Op — Trmux- (A.S.lﬁ)
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