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Abstract—An upwind-weighted finite-element medel is presented for the analysis of non-boiling hot dry
rock geothermal systems. The model accommedates the essential mechanisms of permeability eshance-
ment or degradation resulting from injection of fluid at a temperature different from ambient. The effects
of induced thermal strairs and fluid pressures in conditioning both rormal and shear displacements in an
ubiquitously jeinted continuum are accommeodated. The mass is idealized as a blocky assemblage where
diffusive-advective energy transport in the fracture system is augmented by transient heat supply from
intact rock biocks. The true transient nature of both energy supply from the blocks to the percolating fluid
and the development of thermal sirains within the medium are determined analytically. The local
assumption of full lateral restraint coupled with analytical representation of thermal strains renders the
nonlinear initial-value problem fully defined in terms of the two dependent variables of fluid pressure and
fluid temperature only. Subject to these assumptions, complete fluid-pressure and fluid-temperature
histories of large, thermally stimulated reservoirs may be determined effectively and efficiently. Results
are presented for both single point injection and dual point injection-withdrawal scenarios to iustrate the
possible scope of the method.

NOMENCLATURE

a block radius

ar fracture area (per unit volume)}
Ay, Az block displacement coefficients
B, B,  block flux coefficients

D, D thermal conductivity, conductivity matrix
E modulus of elasticity

E advective transport matrix

5 block surface heat flux

¥ fluid heat capacity matrix

G shear modulus

G solid heat capacity matrix

H fiuid thermal expansion matrix

ke kg rock joint pormai and shear stiffnesses

K. K hydraulic conductivity, conductivity matrix
! summation integer {time step)

" summation integer

PP fluid pressure, nodal fluid pressure vector

Qer s external hydraulic flux, block thermal flux
9, 45 nodal fluid discharge vector, nodal thermal discharge vector

r radial coordinate

Ay joint shear strenpth (effective stress)

8 fluid storativity matrix

t, A time and time increment

T temperature, nodal iemperature vector

7..T, Dblock temperatures at radiir and a
1y, i, block surface displacement, block radial dispiacement {spherical block)

* Currently at, Waterloo Centre for Groundwater Research, University of Waterioo, Waterloo, Ontario, N2L. 3G1,
Canada.

691



692 D. Elsworth and J. Xiang

i, block surface displacement (prismatic block)
X Cartesian coordinutes

u ceefficient of thermal expansion

i} compressibility

b porosity

P, g joint friction angle, joint dilation angle

Ao Lamé cocfficients

v Poisson ratio

£~ specific heat capacity

¥ unit weight

Ty in-situ stresses

Ay change in joint normal (I = }} and shear (i # ) stress
Aoy change in joint normal stress (difation}
Subscripts

f fluid

5 solid

Superseripts

t time

time derivative

INTRODUCTION

Permeability changes that occur in competent, blocky rock under non-isothermal fluid
injection have been well documented (Murphy, 1982). The process is particularly evident in hot
dry rock (HDR) geothermal energy schemes where permeability enhancement is effected by the
complex interaction of injected fluid pressures and induced thermal stresses. Increased fluid
pressures within a minimally permeable and initially fractured rock mass result in joint opening
(Brekke eral., 1972; Noorishad e al., 1984), shear deformation and bridging (Pine and Cundall,
1985) and, under more extreme conditions, crack extension (Fairhurst, 1964). Since the fluid
permeability of single fractures is proportional to aperture raised to the power three, small
dilatant deformations may greatly increase formation permeability (Elsworth and Goodman,
1985). Sudden, non-uniform or cyclic temperature changes may overstress the intact rock and
result in increased fracture density of cracks at the micro- and macro-scales (Nemat-Nasser,
1982). Additionally, rransient cooling of the rock mass induces contractile volumetric strains
that may generate an increase in pre-existing macro-fracture volume, even in the absence of new
crack formation. The behavior of the reservoir under this mode of thermal loading is determined
primarily by the redistribution of thermal strains and in-situ stresses that result from quenching,
Transtent reduction of flow impedance within reservoirs producing at quasi-constant rate is
most likely attributed to these multiple interacting phenomena.

The following addresses a simplified treatment of the behavior of an HDR reservoir
containing a pre-existing ubiquitous, orthogonal fracture system. The treatment describes the
transient development of rock-joint deformations that result from changes in fluid pressure and
thermal straining within an initially stressed formation. The initial assumption is that the jointed
rock mass may be represented as a two-phase continuum comprising solid rock blocks separated
by fluid-filled discontinuities. Advective transport operates within the pre-existing fracture
system with conductive transfer being the dominant mechanism governing thermal transfer
between non-porous rock blocks and the fracture fuid.

Rock-mass displacements and stresses are not explicitly accommodated. Rather, transient
thermal volumetric strains are evaluated under the assumption that a macroscopic control
volume containing an assemblage of rack blocks will remain at constant volume. Volume
changes are therefore restricted to within the solid phase. For both heat production from the
intact rock blocks and volumetric deformation of the mass an analytical transfer function is used
to accurately gauge the unsteady behavior and determine the magnitude of permeability
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enhancement. This representation allows the behavior of the system to be evaluated with
reduced unknowns. The necessary system variables are the transient fluid pressure, rock and
fluid temperatures and cartesian displacements within the mass. The assumption of a constant
macroscopic control volume eliminates the necessity of recording displacements explicitly and
therefore removes the three displacement degrees of freedom from the system. The use of an
analytical transfer function documenting the release of thermal energy from the rock blocks
similarly allows the rock temperature to be neglected as a degree of freedom. The remaining
degrees of freedom comprise fiuid pressure and fluid temperature, only. The desire in reducing
the degrees of freedom to this level is to allow large simulations to be efficiently completed while
still representing the major interacting components of the system.

MODEL ASSUMPTIONS

The following assumptions are germane to the reduced degree of freedom representation:

(1) The dominant energy transport modes are conduction within the solid phase and mixed
advection and diffusion within the fracture system.

(2) Changes in fracture aperture may result from fluid pressure transients, thermal strains and
shear displacement.

(3) A constant control volume and assumptions consistent with full lateral restraint of the
control volume are imposed.

(4) The load-deformation behavior of component fractures is trilinear in normal closure and
linear in shear deformation. At failure, the fractures are purely frictional with a constant angie
of dilation,

For HDR geothermal energy recovery. induced advective transport is the primary mode of
heat transfer. Continuing microseismic activity and reduction of flow impedance with time are
two factors that suggest aperture enhancement as the predominant mechanism by which
permeability of the mass increases under steady production.

SYSTEM EQUATIONS

Two coupled partiai differential equations govern the performance of the saturated rock
system. Transient solution for mass balance provides the requisite pressure distribution which,
in turn. controls thermal dissipation through advective flow. The mass balance and energy
balance equations relevant to an ubiquitously jointed and initially isothermally saturated rock
mass are, respectively

d Kf BPE an

Zoih G = P ot )
axl(}q axj) ¢’ﬁf Py (1)
d Dfan (h) aTI an

ari(qb axj-) p‘C‘(q) x| BT RSy (2)

where subscript { denotes fluid parameters, subscript s denotes terms pertaining to the solid
(rock} phase and; 7; = fluid temperature, P; = fluid pressure, K; = hydraulic conductivity of
fracture system, Dy = thermal conductivity of fluid, ¢; = specific heat capacity of fluid, ¢, =
externally supplied hydraulic flux (injection or withdrawal rates}, g; = total hydraulic flux (per
unit volume), p; = fluid density, y; = fluid unit weight, ¢ = fracture porosity of ubiquitously
jointed mass, §; = fluid compressibility, a, = coefficient of thermal expansion of the fluid. ¢, =
thermal flux from solid phase (per unit volume), and x; = cartesian coordinate where, in
general, i = 1, 3. Two dimensional analysis (i = 1, 2) is considered throughout the following.
The equations are coupled through the magnitude of the advective heat flux term of equation
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(2). This is directly dependent on the solution of equation (1). Flow within the rock mass is
controlled by temperature dependent fluid viscosity. The ability of single fractures to transmit
fluid is strongly controlled by the fracture aperture (b).

Although not expiicitly represented in the heat transport or flow equations, changes in
fracture apertures may be effected by either modification of the fluid pressure regime or as the
result of thermal straining within the matrix blocks. The effects of fluid pressures and thermal
strains on the stress and displacement regime at the block surfaces may be accommodated under
the assumption of full lateral restraint. Under this assumption, displacements between adjacent
fracture walls may be determined directly from the known fluid pressures present within the
fracture network and from the calculated thermal history at block faces, only. If the thermal
history of fluid temperature at individual block faces may be determined, the induced thermal
stress and thermal displacement histories may also be uniquely evaluated.

ANALYTICAL TRANSFER FUNCTIONS

Two transfer functions are required to supplement equations {1} and {2}. The first is to
represent the thermal contraction or expansion of individual blocks under a changing surface
temperature regime. This displacement will directly affect the magnitude of the hydraulic
conductivity term (K;) in equation (1}. The second transfer function is required to accurately
describe the thermal flux stimulated from the block as it is cooled or warmed from ambient
temperature. This thermal energy will be transferred directly to the advecting fluid through ¢, in
equation {2). To maintain the problem definition at a tractable level, individual rock blocks are
represented as equivalent spheres. This concept together with the rock mass geometry is
illustrated in Fig. 1.

Block surface displacement

For an unstressed spherical block of radius a, coefficient of thermal expansion ¢, and witha
radial temperature distribution within the solid material T, the displacement at any radius r may
be given as (Boley and Weiner, 1960)

3+ 2T s 44 ry 1P
P = O Tr.-d T e Tr'"d 3
. “‘(z + 2 )[r J YT e (a3) { 7 r} @

X3

X

Fig. 1. Geometry of an ubiguitously jointed mass showing actual prismoidal and idealized spherical biocks.
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where A and ¢ are Lamé coefficients. Although, in general, the temperature distribution within
the block is a complex function of the external thermal loading history, the only specific interest
in the context of this work is the boundary displacement at r = a. This displacement controls
volumetric strain within the fractured medium. The block surface displacement, u,,, is therefore

§
i, = B%SJ T,rdr (4)
a” jo
which, in a thermally equilibrated block at constant radial temperature 7, above initial ambient,
results in a surface displacement of 1, = «,T,a.

The temporal and spatial variation in temperature within a spherical block, warmed or cooled
at the boundary from ambient temperature may be obtained by solving the spherically
symmetric initial value problem subject to the boundary conditions

T.=0 a>r>0fort=0" (3)
T,=T, r=aforr>0" (6)
Solution is available as (Carslaw and Jaeger, 1959)
t 2aT, - (=1 . {nar 22 a
Ti=T,+ = Z} —sin [ exp (= Dyr'wlpea’) N

where D; = solid phase thermal conductivity, p, = solid phase density, ¢, = solid phase specific
heat capacity and the temperatures are determined at all radial locations () and for all times (1).
Substituting equation (7) into equation (4) and performing the integration yields

C RN
i, = asaTﬂ{l pe Z o exp(—Dn-7tlpeca) (8)

n=1i

to give u}, = block surface displacement at time t resulting from a step temperature change (7}
applied at the outer boundary. This may be represented in dimensionless form as illustrated in
Fig. 2 to give the block response as a unique function of dimensionless time Dy/p.c.a”. For a
continuously varying applied thermal boundary condition (7)) the time dependent surface
displacement may be obtained from use of a convolution product via Duhamel's Theorem
{Carslaw and Jaeger, 1959).

OS5k

Normatized disptacement {u/du)

o i ! ! ]
g4 o3 102 ! o?

. 5
Dimensiontess time S=——>
Dstat

Fig. 2. Dimensionless displacement of an unstressed spherical block with dimensionless time.
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Simply stated, this is an application of linear superposition of known thermal boundary
conditions with time to yield displacement response. Since

wl = f(Ty 1) 9)

then by Duhamel’s theorem

L3
ut = f 2T, -y de (10)
oot
or for the specific case of equation (8)
, AT, (. 6« 1
. == - 1 sy —5 E(r — d
ul o= oA L Py [ = Z = exp (E(+ — )} dr (11)

R
where
E=—-Dan’mlpea’

In.general, the variation of temperature will not be known as a continuous function of time but
will be evaluated only at the close of finite time increments Af. Finite representation of the
partial differential of equation (11} yields a series expansion

i ==l
uf,“”""“l:aaif J [1-%2%6){9(5(:4:_1—))]&
1} ’

pre=l

+ aa ——£ AT, Jl [1 - —6— Z ;}iexp (&G - r))} dr

Ar* " T -
&TH-] 1] 6 = 1 . el
e a 2N ey - 2
ot aa f {1 nzzlnznp (@' — 1) dr (12)
with
ATH*] TH"] Tf
Atl'il - f+l !f (13)

Performing the integration of equation (12) at the two time steps of ¢/ and 1*! allows the

displacement at the latter time level (u5*!) to be evaluated from the displacement at the previous
time level (ui} This is determined by the relation

ultt = Al 4+ aftt (14}

AP = Al + ag AT (13)
AT 6 1

Abl = Z Al exp (BA™) + ao, Sr AT 2 Z e (1 —exp (Ea*1)) (16}

n=1

Surface displacement may be determined for any quantified history of surface temperatures in
a sphere initially at a datum temperature.

Block surface heat flux _
A similar procedure to the previous may be followed to determine heat fux transfer (Bibby,
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1981; Huyakorn er al., 1983) from the surface of the spherical blocks as a function of time.
Solution of the spherical heat flow, initial value problem is reported in equation (7). Thermal
flux (f,) at the sphere boundary is given as

aT
fi=-D,> (17)
r r=a
which on substituting equation (7) yields flux per unit surface area as
2D,T,
fo= =T exp (1) (18)
n=1
The flux per unit volume (g,) is given as
dora’ 3
" =f X = 19
=fux (4/3)7a’ Js a (19)

which on substitution into Duhamel’s Theorem of equation (10) vields the volumetric rate of
heat production {g,) as

f-}-l B!+§ATH~1 + BH—[ (20)
1+1 _ _ +1 ”
B ”AI‘LH Z § 1 exp (";:At } (..1)
BY1 =) qlexp (gar'™) (22)

n=i

It must be observed that both the displacement (1, ) and heat flux (¢} tevms are functions of
infinite exponential series. The convergence of these series are particularly poor for small values
of the coefficient D At/pc.a”. If, however, the time step increment (Ar) is retained constant then
the terms of the exponential series of equations (16}, (21) and (22) are also constant with time
and need only be evaluated once. More onerous than this is the requirement that the values of

Al (equation 16) and B, (equation 22} are stored for each spatial evaluation of ul or ¢! and for
each of the n terms of the truncated series.

Induced thermal porosity change

For considerations of equivalent total thermal energy it is necessary that the idealized
spherical block and real cubic rock block illustrated in Fig. 1 have identical volumes. Consider a
rock mass with ubiquitous orthogonal joint sets of uniform spacing (s) and hence frequency of
1/s. The equivalent spherical radius (2) may be equated as

a%%rs (23)

For infinitesimal radial displacement on the surface of this sphere of (Au) the resulting
volumetric strain (Av/v) of the sphere and hence the rock mass is obtained from the corollary of
equation (19) and equation (23) as

_ _ 173
Av_ —3hu, -3 (%I) Au, (24)
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where contractile strains, compressive stresses and outward radial displacements are defined
positive.

In a cooling bleck, deformations are uniformly distributed within the three orthogonal
directions. Contractile volume strain may, therefore, be distributed equally between aperture

enlargements on joint sets normal to the orthogonal axes. Total fracture area (a;) in a control
volume dx; on edge is

ay = %d{‘; d.\': d.\'3 (25)

and therefore the potential change in aperture (Au;) will be

_éﬁ d.\'; dx: C;.l'j

Auy = 2
; - m (26)
On substituting equations (24) and (25) into (26), the potential aperture change (Au;) is
4o\ 113
Aw; = ("%E) Au, = 161240, an

This gives the potential for aperture enhancement (Ax;) of existing fractures in an initially
unstressed medium. For a rock mass under an initial triaxial stress state g;;, as illustrated in Fig.
1, displacements induced by changes in joint fluid pressure (Ap) or changes in thermal stress
(Aor) will be moderated by both the in-situ stress field and nonlinear joint stiffness. Assuming a
trilinear compression curve for the joint in compression, as illustrated in Fig. 3, and enforcing

full fateral restraint, joint opening (Aw; = —ve) that results from a change in pressure (Ap) is
given by
E —-1
Auy= —|———+ k] A 28
u; L(I = n} p (28)

where k, = joint normal stiffness as defined in Fig. 3 and s 3 b. Fluid pressure is assumed to act
uniformliy on all faces of the block.

For the non-isothermal case, block surface displacements (Auy ) and joint displacements (Au;)
are clearly related if it is mandated that the control volume (dx, dx. dx;) remain constant. Thus,

Normal stress
+o

|- B, {residucl aperture)

-'ALIi

Fracture opening displocement
Fig. 3. Trilincar compression curve for a single rock joint in stress-displacement space.
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for compatibility
AH;’ + AH]' =) (29)
where
— 2
Ay, = iQL;E:ii Ay — sa AT (30)
1
Allj = — A()'ig (31)
Kq
and Agy; = change in normal stress due to thermal effects. Noting that a AT = —1/3(Avv),
substituting equation (24) into (30) and the result, together with (31) into (28} gives
1 s(1—20)] Y4m\1?
Aoi; = [E + -“-‘(-‘—E—)} (?) AH;I (32)

Changes in normal stress (Aoy;) will directly regulate the magnitude of dilational displace-
ments along joint sets. Shear strength (5}, if assumed to be stress level independent, is given as

SW(G;i'i'AGi;_AP;) tan ((f)b+ gbd) l= 1,2 (33)

where ¢, and ¢y represent angle of frictional resistance and dilation angle, respectively.
Changes in shear stress (Ao, ) are directly precipitated by reduction in normal stresses,

The in-situ shear stress from the previous iteration in time (o2) is medified according to the
available in-situ normal effective stress. The drop in shear stress {Ac>) that results from a
change in normal stress (o;;) is represented as

AGIZ = 12 — 5 for Tya > S

(34)
Agp= 0 for g, =8
The potential for shear displacement Av; between two blocks follows as
I s -
AV; = L\T + 5:|A0'13 (33)

where k, is the linear joint shear stiffness and G the shear modulus of the intact rock. Any shear
displacement is moderated by stress buildup that results from joint dilation. Assuming dilation
occurs instantaneously with shear initiation, then it follows from equation (28) that

. E
AO’H = {;(1.‘—21’) + kn][AS’]i tan ¢c§ (36)
where Ao} is the change in normal stress resulting from shear displacement. Considering that,
for the failure condition (o> > §) the appropriate constitutive relation must hold, then

(012 — Aoy) = (o + Aoy + Acyy — AP;) tan (¢, + @) (37)

which on substituting equations (32), (35) and {36) into (37) gives directly the equilibrium shear
stress drop (Ac);) and consequently the equilibriurn shear disaplacement Av; induced for
component thermal displacements (Au,) and changes in fluid pressure (A,). Normal aperture

enhancement is evaluated as

E -t .
Au = {m + kn} (~AP; + At + Ady) (38)
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from which current aperture (b) may be readily determined for any combination of stress level
and appropriate joint normal stiffness (k,) such that b = b, + Au;. With the fissure apertures
uniquely defined as functions of thermally induced displacements (1}, ), virgin field stresses (o;;),
fracture spacing (s). rock mass elastic constants (E, v, kp, k) and residual apertures (b,) the
hydraulic conductivity of the system may be evaluated. Choosing the paraliel plate analogy
without modification for fracture wall roughness. the hydraulic conductivity of an ubiquitously
jointed medium of fracture aperture (b,) is
3
Kf=~g~gj- i=1.3 j=1.3; i#] (39)
' 61’{5
where v; = fluid kinematic viscosity and g = gravitational acceleration. This completes the
definition of all factors strongly influencing the flow regime.

Of all the parameters required to execute an analysis, those describing the nature and
separation of the fracture sets are most difficuit to determine. Fracture stiffnesses, spacings,
frictional characteristics and initial apertures are very difficult to determine, in reality, and must
be the object of sensitivity studies if realistic results are to be matched and ultimately projected.
The thermal and mechanical parameters describing both the percolating fluid and the intact rock
are more narrowly defined and may readily be determined from tabulated values.

FINITE ELEMENT FORMULATION

The governing partial differential equations may be solved most conveniently by using a finite
element scheme. This method allows spatial changes in fracture density and characteristics to be
readily accommodated. Normal Galerkin weighting is applied to the mass balance equation
(equation 1} and upstream weighting (Christie er al., 1976) is applied to the energy balance
equation (equation 2). Analysis by this procedure is well known and will not be further
described here. Equations (1) and (2) may be defined, respectively, at the local elemental scale
as

KP! + SP! = ¢} + HT! (40)
[D + E]T}+ FT} = Gq' (41)

where K = fluid conductivity matrix, § = fluid storativity matrix (lumped), D = thermal
diffusion matrix, E = thermal advection matrix, F = thermal heat capacity matrix (consistent),
G = rock thermal capacity matrix (consistent), H = fluid thermal expansion matrix (lumped),
P; = nodal fluid pressure vector, q; = nodal fluid discharge vector, T; = nodal fluid temperature
vector, g, = nodal thermal discharge vector. A dot superscript represents time derivative and
both equations are written at time level t as denoted by the superscript. For completeness, the
form of the individual matrices representing a four noded element are included in Appendix I.
All integrais are determined analytically.

Nodal variables {or sequential time steps t' and t'* ! may be written using finite differences via
a Crank-Nicolson implicit scheme for equations (40) and (41) where

P{" = 3(Pr + P*) (42)

i+1

and
T = YT+ T7) (43)

Substituting equations (42), (43) and (20) into equations (40) and (41) and rearranging yields the
final system of equations,
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1 dalpr |1 g1 po e ey 1 I+1 _ oo
MEK(T5)+AISJP _[Als iK(TE)}P +5lai+ '] - L HITT - T (44)
and
lo+m+Lr-Lteptlrr=[Le- L+ g+ o - piyl
12 Ar 2 ! f At D 3 i 1 [
-~ % GBIT; ' + %G[Bg + B4 (45)

where hydraulic conductivity K(T7) is temperature history dependent, It follows directly from
equation (20) that vectors B, and B; are written to represent nodal magnitudes. These coupled

equations are solved iteratively within each time step to describe thermal porosity changes
within the formation.

VALIDATION STUDY

The capabilities of the upwind-weighting scheme used in the finite element formulation have
been well demonstrated'in cases where advective transport processes dominate. The dominance
of advective transport over diffusive transport is best referenced with respect to the Peclet
number (P,) where, at the local element level,

gelprcy
P, ===
dDy

and [ is the element length. For cases where matrix thermal diffusion is neglected, a comparison
of the numerical scheme with the results from an analytical solution (Bear, 1972) and those of
other upwind weighted schemes (Noorishad and Mehran, 1982) are illustrated in Fig. 4. Even
for the relatively high Peclet number of 100 the numerical results show minimal overshoot,
undershoot and smearing of the thermal front,

Where thermal diffusion into the surrounding rock mass (initially at a temperature of zero) is
accommodated, the sharpness of the thermal front is diffused. This effect is also illustrated in
Fig. 4, where the effects of three different fracture spacings are examined. As would be
expected, where the dimensions of individual blacks are small, the rapidity with which the

(46)

No matrix hect loss

e Analyticel sotution

w - Numericol solution At=0.4
Maotrix heat loss incorporoled

12 Spherical block radius o= 10
o Sphericaol block rodies ¢=00 and 1

Normatized temperature (T/AT}

F e 5 6 7 8 a P
Distance {1} m

Fig. 4. Validation results for linear flow at a Peclet number (Pe) of 100.
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percolating fluid is cooled is most marked. This is due to both the high specific surface area ratio
of the smaller blocks and the short heat transfer length atforded by the blocks. Although, from
Fig. 4, itis evident that the larger blocks are less efficient in cooling the passing fluid in the short
term, the extended duration of the block thermal flux maintains inlet fluid temperatures lower
for large blocks versus the smaller blocks.

PARAMETRIC STUDIES

Two studies are completed to illustrate the system behavior that develops for flow within a
two-dimensional section where a cooling fluid is injected into the initially saturated mass.

Case one

The first is for a square domain, 200 m on edge with a centrally located injection well.
Constant pressure conditions are applied at the external boundary and fluid is injected at an
overpressure of 1 MPa, 30°C cooler than ambient at the central wellbore. Quarter symmetry of
the problem is used to represent a 10 = 10 mesh of equal sized elements. Material properties are
those representative of a fractured granite rock mass. Details are recorded in Table 1.

Temperature dependent changes in fissure apertures modify the flow regime in a transient
manner by influencing the permeability distribution within the domain. The sequence of
changes in pressure distribution occasioned as cool fluid initially quenches the rock mass closest
to the injection point and spreads radially outwards is illustrated in Figs 5a through e, A time
interval of 4.16 h separates successive frames with the influence of permeability enhancement
being expressed through a reduction in pressure gradient close to the wellbore. The parameter
driving the change in pressure distribution is the advected fluid temperature, the temporal and
spatial distribution of which is illustrated in Figs 6a through 6e at time increments of 4.16 h each.
Apparent, especially in Figs 6b and 6c¢, are isolated areas of overshoot generated from the poor
conditioning of even the upwind-weighted equations used in the present formulation. This
overshoot is restricted to a maximum value of 10% of the initial temperature differential and is
removed in successive time frames.

Table 1. Exampie parameters

Case one Case two

Symbol Description Magnitude Magnitude Units
Fiy. O, Oy Initial stresses 0.3,03.0.2 52.5,525.20 MPa
APy Wellbore fluid pressure (above ambient) +1.0 +10.0 MPa
AT Injection temperature (relative 1o ambient} =30 30 degrees, C
5 Joint spacing 1.0 1.6 m
oy Solid density 2627 kg/m?
v Poisson ratio (.22 s
E Deformation modulus 58 % 10° MPa
[ Specific heat capacity (solid) 218 Jikg*C
a, Coef. of thermal expansion (solid) 7.42 x 107° °C
D, Thermal conductivity {solid) 9770 Hhm*C
ky Joint sormai stiffness 10° MPu/m
k, Joint shear stiffness 5% 10¢ MPa/m
[ Joint friction angle 40 degrees
Da Joint ditatancy angle 5 degrees
o Fluid density 1060 kg/m®
c Specific heat capacity {fluid) 4187 JikgC
Dy Thermal conductivity {fluid) 262 Fhm®C
B Fiuid compressibilisy 0.4239 % 1073 MPpa!

i Finid kinematic viscosity 0.0029 m*/h
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Fig. 5. Temporal change in fluid pressure distribution for injectior into a square domain (Case one). Respective
contour levels are at P/AP = (.95, 0.80, 0.65, (.50, (.35, .20, G.05.
(a) Time = 4.15 h (c) Time = 12,45 h
(&) Time = 830 h (d) Time = 16.60 h
(¢} Time = 20.75 h
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Fig. 6. Temporal change in fluid temperature distribution for injection into a square domain {Cuase one}. Respective
contour levels are at T/AT = 0.93, 0.80, 0.63, .50, 0.33, 0.20, 0.03.
(a) Time = 4,15 h (c) Time = 1245 h
{b) Time = 8.30 h {d} Time = 16.60 h
(e) Time = 20,75 h
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Where the 10 # 10 mesh is substituted by a 20 * 20 mesh, the extreme sensitivity of the analysis
to discretization density is effectively illustrated. The results for fluid temperature distribution
in a refined mesh comprising 400 elements for the same initial vaiue problem is illustrated in the
contour plot of Fig. 7 at a time of 20.8 h. Comparison of Figs 6e and 7 illustrates the twofold
influence of accurate description of permeability variation and equation stability on determining
the location of the thermal front. Since permeability is assumed constant within individual
elements, the density of discretization holds an important influence over the nonlinear solution
of the problem. Of equal consequence in solving the system of equations, however, is the
attendant stability for high values of Peclet number. By halving the edge dimension of all
elements within the mesh, the local elemental Peclet number, as defined in equation (46), is also
halved. This presents improved stability characteristics and reduced overshoot and undershoot.
Reduction in the Peclet number also reduces the required magnitude of the upwinding
coefficient (o) and may be a contributing factor further explaining the lag of the front in the case
of the refined mesh. Of course, the increased precision is not gained without some computatio-
nal penalty. Since the computational effort expended in solving the system of equations is
proporfional to the number of equations raised to the power three, quadrupling the number of
equations increases the computational effort by a factor of 64.

The distribution of aperture enhancement within the section is illustrated in Fig. 8 after a time
of 4.2 h. Large aperture changes are concentrated close to the injection point where the
influence of temperature is greatest. Also apparent within the figure is the influence of the
approximately radial pressure distribution on increasing apertures within the rock mass.

Case rwo

As an example of further application, results for a typical simuitaneous injection-withdrawal
stimulation are iliustrated for the 400 x 300 m half symmetry section of Fig. 9. Physical
parameters pertaining to the system are given in Table 1. The development of the fluid pressure
distribution in the initially homogeneous formation is illustrated after 5.6 h in Fig. 10. The
asymmetry of the flow sysiem is readily apparent despite the symmetry of applied boundary
conditions. This asymmetry is conditioned by the spatial distribution of permeability enhance-
ment within the section as illustrated in Fig. 11. Permeability is increased immediately
surrounding the injection point as a result of the mixed interaction of thermal and fluid pressure
effects. The converse is true surrounding the withdrawal point where reduction in fluid

Fig. 7. Temperature distribution for a refined mesh (20 = 20) at time ¢ = 26.75 k (Case one). Respective contour levels
are at T/AT = 0.93, 0.80, 0.63, 0.50, 0.33, .20, 0.03.
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Fig. 8. Distribution of joint apertures at time ¢ = 4,15 k (Case one), All apartures in metres.

Fig. 9. Finite clement mesh for simuliancous injection-withdrawal stimulation {Case two).

IR,

Fig. 10. Fluid pressure distribution for simultancous injection-withdrawal 2t time ¢ = 5.6 h (Case two). Respective
contour levels are at PIAP = (.95, (.80, 0.65, 0.50, 0.35, 0.20, 0.05.
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Fig. 11. Distribution of joint apertures at time ¢ = 5.6 h {Case two). All apertures in metres.

pressures from the ambient state has induced fissure closure. It is this distribution of permeabili-
ties throughout the domain that exercises a major control on the resulting time sequence of
pressure changes and resulting flow rates and impedances through the fractured medium.

CONCLUSIONS

The proposed model introduces some assumptions that allow solution of thermal transport
problems in complex nonlinear geologic formations. The key assumption is that a macroscopic
control volume must be considered to fully contain the same specified number of rock blocks.
Subject to the validity of this requirement, the proposed solution scheme offers considerable
utility in that nodal displacements and temperature distribution within the solid phase are
treated as redundant parameters although their effects are intrinsically accommodated.

Assuming full lateral restraint, no attempt is made to solve for stress equilibrium explicitly
since displacement degrees of freedom are deliberately made redundant. Any solution will
therefore satisfy the compatibility, constitutive and boundary condition constraints of elasticity
but vielate equilibrivm. Compatibility is enforced between adjacent elements and within
individual elements. Zero displacement external boundary conditions are clearly satishied as are
the shear fallure and compliance constitutive relationships within elements. Local equilibrium
between adjacent rock blocks and joints within a single element is satisfied although inter-
clement equilibrium is viclated,

The assumptions made in enforcing full lateral restraint are most readily appreciated against
the framework of transient hydrogeologic analysis. The concept of storativity, invoked to
quantify fluid volume released from storage under a change in fluid pressure, fails to satisfy
either local equilibrium or compatibility. Nonetheless, storativity concepts have provided, for
many decades, a satisfactory solution in the quantification of hydrologic analyses.

The elastic constitutive laws for the material are satisfied along with compatibility and
boundary conditions for the solid phase. The only constraint violated through the assumption of
full lateral restraint is that of local equilibrium between adjacent elements. All requirements for
conservation of mass and energy applicable to the flow system are met on a transient basis.

Idealization of the rock volume as an assemblage of spherical blocks is used to cast the
problem as tractable. This idealization maintains an equivalence between the energy content of
the real and idealized solid components providing the solid volumes are equivalent as mandated
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in equation (23). Displacements within the blocks are evaluated from a spherical analogue
which maintains compatibility, in an elastic sense, throughout the deforming sphere and
requires that surface deformations are consistent with heat loss at the boundary. However,
although reasonable, the behavior does not directly address the thermal distribution and
resulting deformation field within the real prismatic blocks. Errors precipitated in this manner
are anticipated to be of low order, only.

The determination of block surface displacements and flux magnitudes requires the evalu-
ation of an infinite exponential series. This individual computation within the solution pro-
cedure comprises a significant portion of the overall effort and requires special storage
requirements for the antecedent magnitudes of parameters from the series. This burden
becomes particularly onerous as the block size increases or as the thermal diffusivity decreases.
This complication may be considerably eased if a guasi-steady approximation is used to
represent heat flow from the individual blocks, requiring a constant temperature distribution
throughout.

Dependent to some degree on the parameters chosen, the problem is intensely nonlinear.
This nonlinearity exacerbates the intrinsic stability problems associated with numerical solution
of advection dominated flows. Upwind-weighting of the solution has minimized this facet as far
as appears reasonable.
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APPENDIX 1

The elemental matrices for a four noded, upwind-weighted element are:

D= f WT(Dye)N dd
1
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