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A Boundary Element—Finite Element Procedure
For Porous and Fractured Media Flow

DEeREX ELSWORTH
Deparvment of Mineral Engineering, Pennsylvania State University, University Pork

A coupled boundary element—finite element procedure is presented for linear and nonlinear fluid flow
simulation in porous and fractured aquifers. Quadratic variation of both element geometry and funda-
mental singularity is used in the constitutively linear direct boundary element formulation. Compatible 3-
to 9-noded Lagrangian finite elements are used to represent the plure flow domain for mixed lincar and
nonlinear flows, alike. Nodes on the external contour of the boundary element domain zre only retained
if flux boundary conditions are rot prescribed, thus resulting in reduced matrix dimension. The Feo-
metric conductance of the linear boundary element region is evaluated only once. The resulting system
matrices remain sparse, positive definite, and may be arranged for symmetry. Nonlinearity, in this
context, is restricted to turbulent flow at high Reynoids numbers, although other nonlinearities may be
easily accommodated using a similar procedure. A Missbach relationship is implemented to represent
turbulent flow in rock fractures, Turbulent effects are confined to the finite element domain, and the
resulting nonlinear equations are solved by direct iteration. Validation studies are completed against
analytical solutions to linear and sonlinear flow problems. Excellent agreement is obtained with rela-

tively sparing nodal coverage.

INTRODUCTION

Numerical models provide an effective means of rapidly
evaluating a number of comparative scenarios in the quantifi-
cation of groundwater flows. The heterogeneous and dis-
continuous nature of rock aquifers, combined with the limited
access and penetration of standard site investigation pro-
cedures, makes the acquisition and interpretation of basic hy-
drologic data extremely difficult. High-guality numerical simu-
lation techniques therefore provide an extremely important
tool with which the impact of varied engineering or resource
exploitation schemes may be readily evaluated. Sensitivity
analyses of this nature provide a firm basis upon which subse-
quent judgemental decisions may be made [Bachmat et al,
19807,

Of the powerful numerical techniques available, formu-
lations may be divided between domain and boundary lormu-
lations. Associated with individual models are intrinsic merits
and demerits which regulate their performance in any set engi-
neering situation. Domain formulations encompass finite ele-
ment and finite difference methods and require that the in-
terior of the flow field is suitably discretized. Conversely,
boundary solution procedures require only that the external
edge contours of separate hydraulic zones be delimited as in
the direct and indirect boundary element methods.

Domain methods offer powerful attributes in that compiex
nonlinear flow behavior, such as that evident in partially satu-
rated [ Newmnan, 1973] or turbulent flow [Elsworth, 19857, may
be casily accommodated. The system matrices are nonfully
populated and in many instances arc sparse, allowing con-
siderable economy in storage requirements and execution
time. Further computational savings may be realized with the
finite element class of domain solutions where elemental and
global system matrices are guaranteed symmetric and positive
definite for linear and nonlincar potential Aow problems alike.
The extensive meshing within the domain, however, exacerb-
ates data input requirements and intreduces additional inter-
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nal degrees of freedom for which resulfs are sometimes not
required. Thus although the matrix bandwidth may be small,
the number of active equations comprising the system may be
exiremely large.

Boundary solution procedures are ideally suited to problem
geometries of large volume to surface area ratio (equidimen-
sional). Relatively trivial meshing is required, the dis-
cretization being limited to the edge contour of hydraulically
homogeneous zones. System matrices are, however, asymmet-
ric and fully populated within identified hydraulic subregions.
Additionaily, the virtue exalted in requiring discretization over
the domain contour only is negated if nonlinear analysis of the
interior is attempted. Primarily for this reason, boundary solu-
tion methods have not enjoyed popular application to nonlin-
ear problems.

Coupiled boundary element-finite element procedures offer
the potential of using each of the different numerical pro-
cedures in the environment to which they are best suited. The
innate strength of domain methods in dealing with constitu-
tive nonlinearity, together with the relatively favorable struc-
ture of the system matrices make them ideal candidates to
describe the behavior of nonlinear regions embedded within
otherwise linear systems. The effectiveness with which bound-
ary eclement procedures may accommodate volumetrically
large but constitutively linear domains presents an ideal
medium with which the far field may be adequately repre-
sented. Nonlinear eflfects discussed in the following sections
are restricted to turbulent flows in [ractured and porous-
fractured media.

PREVIOUS APPLICATION

Previous applications of physical coupling between domain
and integral methods are evident within the continuum me-
chanics literature. These applications span the fields of wave
mechanics [Chen and Mei, 1974; Shaw, 1978], electrostatics
[Silvester and Hsieh, 1971], and elastostatics [Brady and
Wassyng, 1981], although this list is not exhaustive. A fine
summary and critical commentary on many of these methods
is given in the work by Zienkiewicz et al. [1977]. Application
to problems of Darcy fluid flow have been investigated by
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Shapiro and Andersson [1983]. A coupled procedure to accom-
modate line finite elements representing [fractures in two di-
mensional space was presented using constant singularity
boundary elements and linear variation finite elements.

The following presents a coupled procedure using La-
grangian quadratic basis functions to represent element geom-
etry and dependent variables at the interface between finite
element and boundary element regions. Interelement com-
patability is therefore strictly enforced. A method of straight-
forward coupling is used to condense out unnecessary nodal
equations and application is investigated to linear and nonlin-
ear flow problems.

FLow NONLINEARITY

A generalized constitutive relationship for flow in saturated
porous and fractured media may be represented by Darcy's

law
_ _x[%\ ¢
o= -K(3) % o

where © is the Darcy flow velocity, #¢/8x is the driving hy-
draulic gradient, and K(2¢/0x) is the gradient dependent hy-
draulic conductivity. The nonlinearity arises from mixed iner-
tial and turbulent efects which operate simultaneously as flow
velocities beeome significant. Both inertial and turbulent ef-
fects are manifest as increased flow impedence when Darcy
velocities are increased. Inertial impedance results from spatial
accelerations within the fow field that may commeonly be at-
tributed to converging flow. These effects have been observed
experimentally and may be deduced based on consideration of
mometum balance within the Navier-Stokes equations [Irmay,
19587, Turbulent effects may be evident at the high-flow veloc-
ities possible within open voided or fractured rock masses.
Fractures, especiaily, provide open conduits in which high ve-
locity flows may be realized under relatively modest hydrautic
gradients, For rock [ractures, the transition to turbulent flow
is most conveniently indexed by recourse to the Reynolds
number Re such that

Re = 2bu/v 2

where b is the nominal fracture aperture, and v is the fluid
kinematic viscosity. The nondimensional Reynolds number is
extremely useful in fracture flow applications in that it is pos-
sible to define the range over which certain hydraulic parame-
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ters are applicable. These hydraulic parameters are the con-
stants in the commonly used Missbach and Forchheimer flow
laws.

The Forchheimer law uses a polynomial expression to relate
the Darey velocity v to driving hydraulic gradient d¢/dx as

dpjdx = av + by? 3

where & and b are experimentally determined parameters as-
sumed constant over a given range of Reynolds numbers. The
general correctness of this expression may be deduced from
manipulation of the Navier-Stokes equations [Irmay, 1958]
with the constants d and b being properties of both the fluid
and transmitting mediuvm. For low velocity flows, @ is equiva-
lent to the reciprocal of hydravlic conductivity and b is near
zero.

Despite the analytical robustness of the Forchheimer re-
lationship, the more compact Missbach law has found greater
favor within groundwater applications related to fracture hy-
drotopy [Louis, 19697 and flow in open voided materials
[Leps, 19737 with some exceptions [Volker, 1969; 1975]. The
Missbach law links Darcy velocity v to driving hydraulic
gradient through a power relationship of the form

e /dx == cv” “4)

where the proportionality constant ¢ and the power exponent
¢ are constant over given ranges of Reynolds number. The
Missbach relationship of (4) may be inverted to yield

- 9 ¥
o= —Kc[ axJ )

where o = 1/e and the equivaient hydraulic conductivity K, is
constant anly over a given range of Reynolds numbers. For
laminar flow, K, is equivalent to the saturated hydraulic con-
ductivity, and « is unity. For fully turbulent flow in a rough-
walled fracture, the equivalent hydraulic conductivity K, may
be determined empirically, and « is equal to 1/2. Transition
from laminar to turbulent flow is indexed by a critical Reyn-
olds number Re,. For rough-wailed fractures, both the critical
Reynolds number and the equivalent hydraulic conductivity
are controlled by the ratio of mean fracture wall roughness to
fracture double aperture k/2h. Experimentally derived suites of
results are available [Louis, 1969] to quantify these parame-
ters. Equivalent hydraulic conductivity magnitudes are given
in Table ! referring to the hydraulic zones, one through five,
depicted in Figure 1. These results are germane to the follow-
ing.

FiNITE ELEMENT IMPLEMENTATION

The nonlinear hydraulic conductivity of {5) may be rear-
ranged into a form directly analagous to Darcy’s law for one
dimensional flow as

L [T 28 _g ot
v= [K{ax] ]6x— K&x )

where K is an equivalent scalar value of nonlinear hydraulic
conductivity, and « i set equal to i or 1/2 for laminar or
turbulent fHow, respectively, For two dimensional flow, the
appropriate hydraulic conductivity tensor relating cartesian
Darcy velocities to cartesian gradients is given by — KI where
I is the identity matrix. For multinoded plane elements, para-
metric representation of geometry (x, y) and total hydraulic
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head ¢ is appropriate. The point vaiues of any of these param-
eters within the bounds of a single element is therefore

x=h"% (7a}
y=hTy (7h)
¢ =h"d {7¢)

where h7 is a vector of basis functions, the vectoral (beldfaced)
quantities are nodal values, and the left-hand sides represent
interpolated values, Since equivalent nonlinear hydraulic con-
duetivity K in the turbulent regime is a dependent function of
hydraulic gradient, K will, in general, vary within individual
elements. Substituting Darcy’s law of the form given in (6) into
the normal Galerkin method and subsequently appiviag
Green's theorem yields the matrix equation

q=Ko (&

where q Is a vector of prescribed nodal discharges defined per
unit area, and K is a geometric conductance matrix. Equation
{8) is equally valid at the elemental and global scales. For two
dimensional analysis, the area integration required to cvaluate
the geometric conductance matrix K at the elemental level is

given by
K=bh J a’Ka d0 9

Ie]
where a is a veclor containing the derivatives of the shape
functions h with respect to global coordinates: K is a 2 x 2
diagonal matrix (ie, —KJ) containing the magnitude of the
equivalent nonlinear hydraulic conductivity K at all nonzero
entries; and ) is the area of the element. For the two-
dimensional case, the thickness b is considered constant over a
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Hydraulic zones for fraciure fow [Louis, 19697,

single element and Lagrangian basis functions h for a variable
3- to 9-noded element are used.

Rather than describe the variation of equivalent nonlinear
hydraulic conductivity over the elemental domain using the
nodal based shape functions of (7), the magnitude of £ may be
readily evaluated at the internal Gauss points. Dual or triple
point quadrature may be used to evaluate all integrals of (9)
with a dual-point scheme having proved sufficiently accurate
for all examples completed to date. Since, for the turbulent
case, K is a function of the maximum in-fissure hydraulic
gradient, the magnitude of the gradients with respect to global
coordinates are given as

g
ox _
a7

oy

{10

and the maximum hydraulic gradient is computed as the
vector sum of the orthogonal components. Since the formu-
fation is nonlinear with respect to nodal values of total head
an iterative solution is implemented. For the global system, a
laminar solution is first sought to provide initial nodal heads.
This sclution is used to evaluate hydraulic gradients and
hence revise hydraulic conductivities. The direct iteration se-
quence employed is

K' = f(ad)
g = Kt

(1)
(12)

where the superscripted { refers to the iteration cycle and FIG]
refers to “a function of” Only those elements in which the
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Fig. 2. Representation of a three-node isoparametric boundary ele-

ment.

hydraulic conductivity K changes over a single-iteration cycle
require to be recvaluated.

BounpaRy ELEMENT ANALYSIS

To ensure effective coupling between the finite element and
boundary element domains it is important that nonlinear ef-
fects propagating throughout the finite clement region do not
encroach into the boundary solution region. Under this pro-
viso, the boundary domain is assumed to be constitutively
linear and the formulation is able to operate in its most ad-
vantageous mode. In order that flow continuity between the
domain and integral regions is maintained, the boundary ele-
ment procedure must use basis functions compatible with
those of the Anite element region. For the boundary element
procedure discussed in the following, isoparametric repre-
sentation of both singularity and geometry is used. The ele-
ment geometry is iliustrated in Figure 2.

The boundary constraint equation corresponding to the
direct formulation of the boundary element method may be
stated as [Jaswon and Symm, 1977]

Vi, )plj) dU =j i, oy n d (13}

3

(i) + J-

A
where V{i, i and @, j) are kernel functions describing the
influence effccted at point j due to a unit source located at
point i. The total hydraulic potential ¢(j} and normal to the
boundary velocity v(j}:n may be evaluated at any point on
the boundary I" from the kernel solutions. The free term cfi) is
a function of the domain geometry and is equal to §;, for an
internal source and £5,, where point i is located on a smooth
boundary with §,; being the Kronecker delta. For two dimen-
sional porous media flow, the kernels for a line source are
[Kellog, 1953]

M

@i, ) = ;—)—; Inr {14a)
—KM

¥{, )= S {14b)

where r is radius (i to j); K is the formation hydraulic conduc-
tivity; and M is the source strength. Laprangian basis func-
tions are used to define the geometry of an element where (13)
may be rewnitten in terms of local coordinates for a single
biunit line element as

+ +
! ‘

. v Al o ir
e(Bli) + J Vi, (i) = dg = J @fi, el A 3
-1

=1

(15)
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and the Jacobian is identified as

x\? dy\T )R
z[(&) (@] o
with
x = h"x (17a)
y=hTy (17h)
¢=h'¢ (17¢)
von=hT(v-n) (17d)

where h¥ contains a different family of basis [unctions from
those identifie¢ in (7) previous. The Lagrangian basis func-
tions are one dimensional in this case, varying only over the
length of the clement and are represented in local coordinates
as

WY = 01— &) — (18 (14 — (1= 21— £2)]

where & represents the natural coordinates of the biunit ele-
ment with 1 < & < 1. Similar functional variation for both
heads and boundary velocities are used, each being of qua-
dratic form. Since velocities are related to the gradient of
head, it may be desireable to use interpolation one degree
lower for velocities than that for heads, The results of vali-
dation studies completed did not warrant implementation of
this constraint. Under parametric representation, the integrais
of (15) are evaluated by Gauss quadrature for all nodes com-
prising the boundary element system [Stroud and Secrest,
1966; Elsworth, 1986b]. Where a sharp corner is encountered
at a node, the ¥ kernel integrations are completed on adjacent
segments where there is slope continuity on each element seg-
ment. These quantities are then summed to yield the nodal
weighted flux out of the region rather than represent flux in
any particular normal (to the boundary) direction. For a
system of m nodes, each with a single degree of {reedom, m
simultaneous equations result. In matrix format these may be
represented as

(18)

Vhp=@v-n (19)

which, for m known or prescribed nodal boundary conditions
yieids a solvable set. Alter performing appropriate column
interchanges on (19) to rearrange ali known houndary con-
ditions to the right-hand side vector, the identity may be
solved to vield a geometric conductance matrix such that

[ V]d=v-n (20
which is of similar form to the finite element statement of (8).
Premultiplying (20} by the ranked cross-sectional area of flow
will convert Darcy flow velocities directly to discharge quan-
tities such that

q=thTv-ndr 2n
r

where ¢ is a vector of nodal discharges, and kY is a vector of
element by element defined basis functions. The constant out
of piane thickness of the element is given by b, which is unity
for plane flow or equal to {racture aperture for fracture flow
applications. Identities (8) and (20) are fully compatible ina
rigorous fashion. Interelement flow continuity is maintained
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between boundary and domain formulations in a straightfor-
ward manner.

Boundary Conditions

Simultaneous solution of (19} is only possible if either head
or velocity boundary conditions are prescribed at all nodes of
the boundary solution domain. Since, in general, the boundary
nodes that interface directly with the finite element mesh will
have “a priori” undefined boundary conditions, it is necessary
to prescribe artificial boundary conditions to aid the symbolic
inversion of (20). Column substitution is first completed to
move all nodal quantities corresponding to known total head
and, as yet, unconstrained head boundary conditions to the
right-hand side of (19). The right-hand side is completely de-
fined if, for all the unconstrained nodes, the head at one node
is held at unity and all others are set to zero. The system of
equations may then be solved. When repeated for all un-
constrained nedes this procedure results directly in a geo-
metric conductance matrix linking nodal heads to nodal dis-
charges. If | prescribed head nodes exist on a boundary
domain of m nodes then the resulting geometric conductance
matrix from the boundary solution procedure is fully popu-
lated and ! x [ in dimension. Thus the symbolic inversion of
{20} is equivalent to solving a system of m equations for !
different solution vectors.

Al nodes corresponding to prescribed velocity boundary
conditions are cffcctively condensed out and no equations re-
quire to be set up in the following coupled soiution of the
finite element and boundary element geometric conductance
matrices [Elsworth, 1986b], Equation (20) represents the geo-
metric conductance matrix for a single multinoded element,
The conductance matrix may be directly substituted into stan-
dard finite element matrix assembly routines.as a single multi-
noded element with appropriate nodal connections. For linear
flow, the matrix entries for the boundary element domain are
invariant and require to be evalvated only once.

Matrix Symmetry

No particular problems arise in coupling boundary and
domain methods if the boundary solution matrices are asym-
metric, aithough the procedure may be expedited if both
system matrices are symmetric. If a variational formulation is
adopted the peometric conductance matrix {equation {(20))
may be made symmetric after formation according to the
method of Zienkiewicz et al. [1977]. In generality, different
functional variation may be chosen for normal velocities v-n
and heads ¢ along the boundary of the domain. If heads and
velocities are defined by shape funetions H° and H® relative to
the entire boundary of the domain then

¢ = H'b 22

prn=FHb.n (23)

Nodal fluxes v - o at the boundary are related to heads by
the geometric conductance relationship of (20} such that
ven=[d"'V]ip (209

The total potential n of the region may be given for the case
where nodal heads only are prescribed as

555
1 4
n=3 J:_ {v-m7d dl 24
which on substitution of (20}, {22) and {23) gives
n= %«b"j (e~ V]'H'TH® d'1d (25)
r

and may be minimized appropriately to give a revised zeo-
metric conductance matrix K

K= ;;; J‘ [(@7VTHTH") + (b~ 'VIHITHY)] 4F  (26)
=T

where symmetry is guaranteed. The functional variation over
individual elements enforced in the current formulation is
identical for head and normal velocity and therefore HY = H*.
To guarantee matrix symmetry in the boundary element for-
mulation, a surrogate to (26} is invoked [ Baneriee and Butter-
field, 19817 such that

=3[@7'V)T + (@7 1V)] 27

to avoid the integration enforced within (26). This approach
has been found to be entirely adequate as is illustrated in the
following validation exercises.

VALIDATION

Analytical solutions for linear and nonlinear flow within
simple domains are used to examine the accuracy, versatility,
and utility of the proposed coupled formulation.

Linear Flow

The performance of the coupled procedure is first examined
for the case of a concentrically holed, circular, porous disc
containing both embedded and fully penetrating finite element
domains. The ability to prescribe boundary conditions on a
nede by node basis for both the finite clement and boundary
¢lement domains provides no particular differences in meshing
and execution for embedded or penetrating domains. Disc ge-
ometries are illustrated in Figure 3 for the two individual
cases with inner radius r = 4. The variation in hydraulic po-
tential with radius is shown in Figure 4. Excellent agreement
is maintained between analytical and numerical solutions even
for relatively modest nodal coverage. The presence of perpen-
dicular corners at the interface between boundary element and
finite element domains are shown not to adversely aflect re-
sults.

In the case of a semi-infinite domain, the coupled solution
procedure may similarly be shown to perform satisfactorily.
The solution for a pressure tunnel within a saturated porous
half space is used (J. W. Bray, personal communication, 1980).
In this example, the direct boundary element procedure re-
quires that the solution domain remains finite but may be
expanded to considerable dimension without computational
penalty. The expanded representation of the half space
domain is illustrated in Figure 5. The problem geometry com-
prises a single circular tunne! of radius 5 m present at a depth
of 40 m below the ground surface. The piezometric surface to
the domain is coincident with the pround surface and unit
head is applied in the tunnel annulus. The boundary element
discretization comprises 48 interior and 32 exterior nodes di-
vided between 40 three-noded elements, For the finite element
domain, 8 nine-noded Lagrangian elements are vsed totaling
45 nodes. Zero flux boundary conditions are applied to the
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Fig. 3. Circular concentrically perforated disc with {a) embedded and {b) fully penetrating finite element domains.

lower and side elements of the boundary element exterior with
the result that the conductance matrix derived {rom the
boundary element discretization retains only 57 degrees of
freedom. The assembled finite element~boundary element pro-
cedure has a total of 84 degrees of freedom. The variation in
normalized hydraulic potential for the solution geometry is
illustrated in Figure 6. The nodal potentials along sections
A-A’ and B-B' are shown to yield excellent agreement wth the
analytical solution. This excellent agreement is maintained de-
spite use of relatively sparing nodal coverage in the finite ele-
ment domain, Similarly, the large discrepancy in physical
magnitude of the boundary element and finite element do-
mains, as illustrated in Figure 5 has not affected solution accu-
racy.

In addition to being capable of representing conditions of
porous media flow, the coupled model may be used in fracture
Aow applications, Analytical solution is vailable for the case of
an infinite porous medium traversed by a sinzle fracture of
finite length and infinite hydraulic conductivity [Gringarten,
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Fig. 4. Variation in normalized hydraukic head with radius for per-
forated disc geometries.
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Fig. 5. Discretization geometry used for a pressure tuanel problem (to scale).

1974]. The fracture is symmetrically disposed about a central
wellbore from which an infinite reservoir is pumped. The
boundary element discretization of the truncated infinite
domain is illustrated in Figure 7a; the internal erack is divided
into 21 nodes and 10 elements, and the external Boundary is
devided into 16 nodes and 8 elements. The external constant
potential boundary is arbitrarily located at a distance of 50 m
to simulate the infinite domain. The domain externa! nodes
are all equally spaced on the circumference although the large
hydraulic gradieats and velocities manifest at the crack tip are
best reproduced i nodal concentrations are located at the
fracture tip. The discretization density is illustrated in Figure
‘Ta where individual elements cover 0.56, 0.24, 0.12, 0.06, and
0.02 m of the fracture haif length. In accordance with a vali-
dation example reported by Shapiro and Andersson [1983], the
surrounding porous medium is represented by a formation
conductivity of I m/d and central well discharge of 1 m%/d.
The boundary element moedel used in this procedure uses
internal slit elements to represent the internal {racture. The
essential component of this element is that it allows discharge
into the element from the surrounding medium on either side.
The formulation of the element has been adequately described
elsewhere [Elsworth, 19864} and no further explanation will
be given here. With the slit element in place within the bound-
ary solution domain, the relevant matrix identities may be
assembled and inverted to yield the geometric conductance of
the system, To this condensed systern, fracture line elements
representing the internal fracture are added and the system
solved in finite element format using a central producing weli-
bore. In agreement with the example completed by Shapiro

and Andersson [1983], [racture conductivities of 10* m/d are
ascribed to the vertical fracture to simulate “infinite” conduc-
tivity. Using this conductivity contrast, excellent agreement
between the analytical results of Gringarten [1974] and the
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Fig. 6. Variation in total hydraulic head with radius for pressure
tunnel geometry.
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Fig. 7. Geometric representation of a fracture within a pseudo inf-
nite porous medium (@) and results for the isoparametric model {b).

model formulated in this work are obtained. The results are
illustrated in Figure 7b.

A second solution procedure may be applied to the problem
whereby more note is made of the true character of the central
fracture of infinite conductivity. The infinite conductivity of
the fracture implies that head losses along the fracture length
will be zero. Thus the only compatible solution to the problem
is one in which nodal potentials along the internal slit are
constant, Similarly, normal (to the fracture) mass fluxes must
total | m?/d when integrated over the fracture length. There-
fore the problem may be solved iteratively satisfying these two
internal constraints of constant potential and prescribed total
normal Bux. Solution by this procedure yields identical results

Finite element
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t0 those previous. Clearly, the fracture to porous medium con-
ductivity contrast of 4 orders of magnitude used in the alter-
nate problem treatment is sufficient to represent the infinite
conductivity of the fracture. Comparison of the results from
this model with those of the analytical solution illustrates the
ability of the formulation to faithfully represent the high flux
gradients at the crack trip. “The crack tip flux is recorded at
11.7 m/d representing an assymptote set at approximately ten
times the height of the figure vertical axis.

Nonlinear Flow

Radial RBow within a single circular fracture pierced cen-
traliy by a well bore is a problem for which an analyical
solution is avalable (B. Amadei, personal communication,
1083). For validation, an axisymmetric geometry is chosen
with domain external and internal radii of 6.0 and (.25 m
respectively. Finite element discretization reaches to a radius
of 2.0 m. The combined bourdary element-finite element mesh
illustrated in Figure 8 is used. The domain comprises 51 finite
element nodes and 20 boundary element nodes. The boundary
conditions for the boundary element domain are such that
only six active degrees of freedom are retained in the con-
densed geometric conductance matrix. For a nominal {racture
aperture b of 1.0 cm, fracture relative roughness k/2b of 0.5,
Auid kinematic viscosity v of 1.8 x 107% m?/s, and a head
differential across the system of 0.022 m, the nonlinear flow
results are illustrated in Figure 9. Excellent agreement is ob-
tained between the analytical and numerical results. The nu-
merical results are completed using two point Gauss quadra-
ture in evaluating the nonlinear conductance matrix integrals.
For this particular example, the results foliowing eight iter-
ation cycles are graphically indistinguishable from those of
over 20 iterations duration. Acceptable results are normally
obtained after 10 iterations. [t is apparent from these simple
validation exercises that the proposed formulation is capable
of returning satisfactory results to a variety of linear and non-
Hinear potential flow applications.

CONCLUSIONS

A coupled solution procedure is presented that is capable of
representing linear and nonlinear fows in porous and frac-
tured media. The coupling is performed in a straightforward
manner through noting respective nodal conductance associ-
ations. This procedure ailows arbitrarily embedded or located
nonlinear zones to be easily analyzed. The boundary element’
domain may be simply considered as a single multinoded
finite element and accommodated appropriately.

The boundary element procedure is particularly suited to
representing volumetrically large or pseudo infinite domains
where system matrix size or solution stability is, within reason,
unaffected by domain dimension. Where prescribed flux nodes ’
are included on the boundary element edge contour, the corre-
sponding system equations are not retained at the global level.
Depending on mesh specific details, this results in considerable
computational saving both at the stage of reducing the bound-

Boundary element ——/

Fig. 8. Discretization of turbulent radial fow within a planar rock [racture.
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Fig. 9. Variation in normalized head with radius for turbulent radial fiow withis a planar rock fracture,

ary element domain and later in global system matrix as-
sembly and solution.

The use of quadratic functional variation for both the finite
element and boundary element domains ensures compatibility
in the strictest sense. This facet appears especially useful in
accurately representing regions of high gradient within the
flow domain at crack tips and other singularities.

Monlinear flow effects are accommodated most effectively
where the noalinearity is confined within the finite element
domain. This allows the domain and integral methods to op-
erate to maximum advantage. Since nonlinear effects, such as
turbulence, are commonly of limited areal extent, coupled pro-
cedures provide a viable method of analysis. This is especially
true where the zones of expected turbulence may be delimited
a priori, say, by the known presence of highly conductive
fractures. In other instances, where turbulent areas cannot be
identified before analysis, some form of self-adaptive capability
in the analysis would clearly be an advantage. Such concerns
arg not addressed herein. The proposed procedure is also ap-
plicable to other nonlinear flow problems.

The resulting matrix identities for the boundary element
domain may be made positive definite and symmetric, This
{acet allows execution using readily available finite element
coding arrangements accommodating storage of geometric
conductance matrix terms above, and including, the leading
diagonal only.

NoTATION

hydraulic conductivity.

equivalent hydraulic conductivity.
equivalent nonlinear hydraulic conductivity.
geometric conductance matrix (FEM).
medium hydraulic conductivity tensor.

line source or sink strength.

2o o

Re, Re, Reynolds number, critical Reynolds number,
V. j), @G, )y kernel terms.
V, & matrices of integrated kernel terms,
a” vector of basis function derivatives in
giobal coordinates.
a, Forchheimer equation constants.

b
b fracture aperture.
¢ Missbach equation constant, Missbach
equation exponent.
free term.,

g gravitational acceleration.
h¥  vector of element basis functions.

k  [Fracture absolute roughness.

! iteration count.

n  domain unit outward normal.
distharge, vector of nodal discharges.
r  radius of separation of kernel functions.

v, v Darcy flow velocity, vector of nodal flow
velocities.
x, ¥ Cartesian coordinates,

o turbulent flow exponent.
d;; Kronecker delta.
¢ total hydraulic head.
Q) domain area.
I' domain external contour.
¢, n local coordinates.
v fluid kinematic viscosity.
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