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A Model to Evaluate the Transient Hydraulic Response
of Three-Dimensional Sparsely Fractured Rock Masses

DEREK ELSWORTH
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A numerical modei is presented for the analysis of transient fluid flow in large systems of rigid fissure
discs. A boundary element procedure is invoked to minimize the number of equations required fo define
the system. Condensation of the system of equations at an elemental or individual disc level is used to
cast the solution inio fnite element format. The resulting global matrices are well conditioned, sparsely
populated, and apparently symmetric. The formulation is illustrated to perform well in validation studies
for both single unconnected and multiply connected fissures. The procedure is ideally suited to the
analysis of large, formerly intractable, fissure networks where the system degrees of freedom may be

reduced to and retained at a minimuom,

INTRODUCTION

The utilization of sparsely fractured rock masses as a poten-
tial host for highly toxic wastes has highlighted the inability of
current characterization methods to describe adequately the
hydraulic response. To date, groundwater hydrogeologists
have been concerned primarily with aquifers of high yield
where existing continuum and dual porosity models are found
to perform adequately [Barenblatt et al., 1960; Snow, 1966]. In
sparsely fractured formations, however, these models are
markedly deficient, and alternative treatment of the problem is
required [Sagar and Runchal, 1982]. Use of discontinuum
models incorporating discrete fractures is plagued with prob-
lems related to both the validity and quality of input data and
the computational effort required to evaluate responses for
even relatively modest realizations of fracture density [Noori-
shad et al., 1982]. The development of simulation techniques
capable of treating such problems on a routine basis is neces-
sary to enhance a fundamental understanding of the physical
interaction of components constituting such a system. Nu-
merical simulation techniques provide a viable technique for
investigating the fundamentai phenomenological behavior of
three-dimensional fractured rock masses in both steady and
transient states. Only with the advent of this facility will im-
proved predictions of the ultra-long-term performance of such
systems help to contribute to successful waste immobilization.

It is evident that rock masses containing low densities of
interconnected fractures may, in some instances, never reach
the required “representative elemental volume” necessary to
alow characterization as a continuum. This factor has been
observed for steady flow in two-dimensional fracture networks
[Long and Witherspoon, 1985] and would Hkely be equally
true for three-dimensional flows in both steady and transient
domains, Indeed, for transient flow the problem is further
compounded in that the volume affected by a significant hy-
draulic disturbance changes with time. Thus it is conceivable
that a rock mass that behaves as a discontinuum in the short
term may transform to continuum characterization as the
zone of hydraulic disturbance migrates.

Routine site characterization and investigation using pump-
ing tests may not be expected to yield useful results unless
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appropriate forms of data reduction are invoked. Qualitative
and quantitative analyses, in this regard, require an intimate
appreciation of the discontinuous nature of the mass [Long,
19837, The consequence of these factors is that under certain
circumstances, continuum models may carry little validity and
should therefore be used with extreme caution as a predictive
tool.

In addition te the geometric influence of the discontinuous
fissures on the hydraulic performance of the rock mass, low-
related changes in effective stress may further affect flow pat-
terns. Conventional tensoral representation of anisotropic
aquifers cannot easily accommodate the consequences of
shear-related dilational opening of rock fractures under
changes in ambient effective stress. Changes in hydraulic con-
ductivity and storage that result from meodifications to frac-
ture aperture may be extremely important [Elsworth and
Goodman, 1985, 19861, Similarly, the possibility of intercon-
nection with superconducting joints and faults must not be
overlooked. Incorporation of these factors into any analysis is
only possible if discrete representation of individual fissures is
possible.

The infivence of all the factors mentioned above may be
examined on a systematic basis for discretely fractured sys-
terns if efficient simulation techniques are available to provide
appropriate sensitivity analyses. The complexity of the prob-
lem limits the applicability of analytical techniques in accu-
rately representing global domain geometry and resulting per-
formance. Although providing an invaluable and indispensible
tool for validation, experimental and in situ characterization
methods are difficult to justify on the basis of both their econ-
omy and the inherent difficulty in defining boundary con-
ditions. This leaves numerical simulation techniques, by de-
fault, as potentially the most attractive contender.

From known statisticai distributions of fissure aperture,
density, trace length, and orientation, Monte Carlo techniques
may be used {o construct a representative rock mass as a
series of Poisson discs. This aspect of the problem is funda-
mental in justifying the development and use of the simulation
procedures reported in the following, although it is adequately
covered in existing literature {Long, 1983]. No further dis-
cussion of statistical aspects will be made. To the assembied
network, appropriate boundary conditions may be applied,
and established numerical techniques may be used to predict
steady state and transient response. Work in this vein has
been completed for the steady amalysis of two-dimensional
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{a) Three intersecting fissure discs and (b) representation of
the central dise in boundary element format.

Fig. 1.

networks [Wilson and Witherspoon, 1974; Shapiro and Ander-
son, 1983] and preiiminary reports for the three-dimensional
steady problem made [Long et al., 1985; Elsworth, 19861. The
following presents a new approach to the steady problem and
extends the capability into the transient domain.

A modified boundary intepgral method is presented to pre-
dict the transient performance of a single rigid fissure disc of
constant aperture. Since the primary motivation is to be able
to assembie a global system containing many tens or hundreds
of such discs, it is essential that the number of nodai degrees of
freedom per disc be reduced to a desired minimum.
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NUMERICAL FORMULATION

Existing finite element, finite difference, and integrated finite
difference solution techniques provide ready solutien to the
general diffusion problem. Adaptation to the specific problem
of three-dimensional fissure flow is relatively straightforward,
comprising in-fissure meshing of elements or nodes, Solution
by finite element analysis yields penerally well-conditioned,
sparsely populated matrices of symmetric form. In all cases,
however, the large number of nodes and the special meshing
techniques required to provide reasonable nodal coverage
within the plane of fissures for a typical problem are restrictive
to implementation. Use of a boundary element formulation
enables nodal coverage to be restricted to fissure edges and
intersections only. Schematic representation of a system of
three intersecting fissure discs is illustrated in Figure 1a to-
gether with a typical discretization of the central dise into
boundary nodes and clements in Figure ib. The nodes repre-
senting the fissure edges may be eliminated, as required, at the
elemental level to leave a minimum of a single degree of free-
dom per intersection. For finite domains the resulting ele-
mental matrices are, by inspection, symmetric and positive
definite and may accommodate fissure geometries of arbitrary
shape. All meshing and matrix reduction operations are per-
formed at the local or elemental disc level prior to global
matrix assembly. The technique is therefore ideally suited to
microcomputer preprocessing and ultimate solution. Iso-
parametric formulation may conveniently be implemented to
represent accurately the curved outer boundaries of fissure
dises, thus reducing to a minimum the number of nodes re-
quired to achicve a predefined level of precision.

Boundary Integral Equations

A single fissure disc of constant aperture may be repre-
sented as a planar flow domain £ of area bounded by an edge
contour I'. Aithough the following application is made only to
discs of circular edge contour, the formulation is entirely gen-
eral and may accommodate equally domains of arbitrary
shape. No particular computational advantage is reaped by
assuming that the discs are circular. Where the external con-
tour I' encloses a homogeneous and isotropic domain £, the
boundary constraint equation conlorming to the direct lormu-
iation of the boundary element method may be stated as
[faswon, 1963; Symm, 1963, Banerjee and Butterfield, 1981]

clilp(i) + J‘

Ia

Vi, iy dl = J‘ D, (-1 dl (1
r

The kernel lunctions V(i j}, and @i, ) relate the radial

(b}
Boundary element domain with source peints placed {a) internaily and (b) on the boundary,
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Fig. 3. The geometry of ana isoparametric boundary element in two-

dimensional space.

velocities and total hydraulic potential induced at point j due
to a umil source at point i, respectively. The total hydraulic
head and normal (to the boundary) velocity are defined as ¢(j}
and () 7, respectively, where i is the unit outward normal at
j. The free term (i) is a function of the contour bounding the
domain at the location of the imposed source i. Figure 2 illus-
trates two basic forms that the domain () may take. First
(Figure 2a), the source i is located internally and the free term
efi) is designated as equal to unity. If, as in Figure 28, the
source is brought to the domain boundary, the free term off) is
equal to one half if the external contour is smooth at i. The
integration around the contour I' implied in equation (1)
yields a single equation where, for the case of the internal
source illustrated in Figure 2a, the physical interpretation of
the free term on the lefi-hand side is that the full influence of
the source is retained within the domain, The equivalent state-
ment for the boundary source of Figure 2b is that hall of the
influcnce is retained within the domain and half retained ex-
ternally. in either case, the integration over the boundary of
the terms in equation (1) will yield a single equation where { is
the point of application of the source and j represents, in turn,
all other line segments of differential length dI” along the
boundary.

If the domain boundary I is divided into multiple “ele-
ments” of finite length, the source may be applied at designa-
ted points in each of the “clements” in turn and, for each
application, a further boundary constraint relation will result.
Thus for n “elements,” n simultaneous equations will be pro-
duced. The format pursued in the following is to develop &
node-centered system rather than an clement-based system.
Thus the influence of the source term at node i is evaluated
over a tributary area at node j with recourse to consistent
shape lunctions. Quadratic isoparametric representation is
deemed most applicable in this instance to represeat the truly
curved nature of the contour boundary I'.

Isoparametric Representation

A typical fissure disc discretized in boundary element form
is illustrated in Figure 1b. Nodes located around the external
and internal boundaries allow a single identity of type given in
equation {1} to be written for each node. Appropriate kernel
functions in this application are [ Keflog, 19533

LM
D, j} = ;;; Inr (2a}

Vi, j), = — KM/2nr (26)

where K is the fissure hydraulic conductivity, r is the radius (i
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to j), and the strength of the line source system is given by
magaitude M. For laminar flow within a fissure of constant
aperture the parallel plate analogy or any convenient modified
form thereof may be used for K [Snow, 19663

The boundary constraint equation {equation (1)) requires
that integrations are completed along the contour of the
domain boundaries I". It is most convenient to complete these
integrations over the extent of the three-noded elements used
in the formulation. Lagrangian basis {unctions may be used to
relate nodal parameters of geometry {x, y), hydraulic head (d),
and normal to the boundary velacity (v - fi) to values along the
length of the element. The pgeometry of a single three-noded
element is illustrated in Figure 3. The vector of basis functions
is given as

W' =3[0~ &~ (1 =&+~ ~ER2A1 =& @)

where —1 < & < +1 and £ is the intrinsic coordinate along
the length of the curved clement. The values of any parameter
may be expressed at any point within the element through the
basis functions such that

x = hTx (4a)
y="hTy (4b)
¢ =h"d (5a)
v-ri=hTy.n (5}

where the nonvectoral quantities (lightface) are defined at any
peint ¢ by the nodal quantitics (boldface) contained within
respective three row vectors.

It is most convenient 1o evaluate the integrals of equation
{1} in mapped form for each node on an element by element
basis, Equation (1) may be rewritten in mapped form over the
length of a single element as

o Lo dr tro o _dr
c(i(i) + VgD o dl= @, ()it — dd
-1 dé -1 dé
(6}
where the Jacobian for the mapping is given as
dU/dE = [dx/dEY + (dyjdey]ie N

and appropriate substitution of equations (3a} and (50} may be
made into equation {(6). The integrals must be evaluated over
all elements composing the boundary to yield the equivalent
of equation (1). The differentials comprising the Jacobian in
equation {7) may be evaluated by differentiating the shape
function vector h” of equation {3) such that

d d

- (x) = — (h")x ity
dé ds

and similarly for .

Integration of Kernel Functions

The integrals of equation (6) may, in almost all cases, be
evaluated using Gaussian quadrature [Strowd and Secrest,
19667 along the length of the bi-unit element. To facilitate this,
the Jacobian and unit normal vector must be evaluated at
each of the Gauss points. Two-poiat quadrature has proved
adequate in all instances to date. On two occasions, however,
the integrals are unbounded as a result of singularities in the
kernel terms of equation (2). These singularities occur when
the node at which the source is applied coincides with the
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node at which the influence is integrated (i.e, nodes [ and f
coincide). For the velocity kernel and free term on the left-
hand side of equation (6) this problem is overcome by mass
balance considerations. If the hydraulic head is everywhere set
equal to unity (@(f) = 1), then by definition, the flow velocity
on the boundary and everywhere within the domain must be
identically zero. The right-hand side of equation (6 must
therefore be zero for ali nodes with the result that the influ-
ence at node § = j is equal to the sum of all other integrals
j+ i This is equivalent to requiring that the fluid volume
exiting the domain over the tributary influence length of node
i enters the domain over the scaled remainder of the contour
length,

The singularity present in the potential kernel involves In r
and is unbounded when [ = j since r — 0. This integral may be
evaluated using a special logarithmic integration formula [An-
derson, 19657 wherchy

1
J Fixd In (1) 2w f(x) @)
0

where w, is an integration weight and f{x;) corresponds to the
function evaluated at x,. An appropriate change of variable is
required for the integration to yield corrected limits between
+land —1I.

Inrernal Stit Elements

The internal boundaries within fissure discs each represent a
ciosed contour and may be treated in an identical manner to
the externai edge of the domain Q. To mainiain the number of
degrees of freedom for an individual disc at a minimum, it is
desirable to have individual slit elements capable of accommo-
dating fluid flows from cither side. In this manner it is not
necessary to locate elements on both sides of what, in practice,
is an infinitesimally thin slit. Recourse is made, therefore, to
the fundamenta! definition of the boundary constraint equa-
tion (equation (1)) where the source term is contained entirely
within the solution domain Q. Thus where the equations are
assembled for an internal source it is only the magnitude of
the free term {c{i})} that differs from the equations developed
where the source term is located on the external boundary.
For sources enclosed entirely within the fissure disc the appro-
priate magnitude of the free term is &, where &, is the Kron-
ecker delta.

Matrix Assembly and Solution

If n nodes are used 1o define the geometry of a single disc, a
system of n simuitaneous equations result. In matrix format
these may be represented as

Vi = Gy (10)

where V and @ are fully populated square matrices of order n
and & and v are vectors of nodal head and normal {to the
boundary)} velocity, respectively. A total of n boundary con-
ditions must be prescribed in a well-posed problem to yield a
solution to equation {10} If the matrix identity is subdivided
according to boundary condition types, equation (10} may be

rewrilten as
Vi, Vi - ®,, .|y,
Vi Vi [($: Dy, Dy, v,

where boundary conditions may be set separately over seg-
ments 1 and 2 corresponding to the subscripts on the vector

(11
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Fig. 4. Equivalent {a) finite element and (b) boundary etement dis-
cretizations used for vaiidation.

quantities, Appropriate boundary conditions for the dise ge-
ometry are zero flow on the external edge, say segment 1, and
a5 yel unknown heads on the internal slits comprising segment
2. Column substitution of equation (1) to render all known
terms on the right-hand side yields

V“ “"Du Q’; — _vu @2 (17)
Vi gy flv, Vi 9, B

since v, = 0. Equation (12) may be solved {or v, if the distri-
bution of potential on the internal boundaries ¢, were known.
Alternatively, the system ol eguations may be solved for a
series of boundary condition cases prescribed by the user.
Since the unknown boundary conditions are only preseat for
the m nodes composing the internal slit elements, the right-
hand side of equation (12) may be evaluated where an individ-
ual internal node is set to unit potential and all others (m — |
nodes) retained at zero. If this procedure is completed for each
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{iv)

{vi)

of the m [ree internal nodes in turn, the terms obtained in the
successive solution vectors of v, represent the columns in the
geometric conductance tensor for the disc. This procedure is
equivalent to performing the symbolic inversion of equation
{12} such that [Zienkiewicz et al., 1977}

¢l — vll _Q)IZ ! _VIZ ‘bz
V2 Vi -0y =V &
rvand a relationship linking the m discharge velocities v, and m

nodal potentials §, on the internal slits is established. This
relationship may be represented in generality as

(i3)

v=Ad (14}
where the matrix A is m x m in dimension and corresponds to
a tensor of geometric conductivity for the fissure disc with all
external edge degrees of freedom removed. If the tensor A is
premultiplied to relate changes in nodal potential ¢ to nodal
discharge q rather than nodal velocities v the matrix statement
will correspond directly to finite element format. Premultipli-
cation of the rows of A must be completed by the integrals of
the basis functions of equation (3} to yield a. The integrals are
of the form

1o dr
=bj W — d¢ {15)
d¢

-1
where b is the aperture of the fissure. Each row of A is premul-

tiplied by the appropriate nodal terms of equation (15) to yield
a tensor K. The geometric conductance tensor directly relates

(vii)

Fig. 5. Combinations of retained degrees of freedom used in validation studies.
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(iii)

x9

{(viil)

nodal discharges ¢ to nodal potentials ¢. Presented in this
manner, the relationship
g =K¢ {16)

is identical to the finite element statement. Although equation
{13} derived by this formulation may in general be non-
symmetric, the only entries of direct interest in forming A and
subsequently K are the basal m rows, Following premultiplica-
tion by the integrated shape function terms of ¢, the K matrix
has been observed, in all cases examined to date, to be nom-
inally symmetric. The physical interpretation of this is that a
homogeneous system of discharge boundary conditions is ap-
plied to a domain truncated by the edge contour. In this
instance the coefficient matrix may be expected to be sym-
metric [Zienkiewicz er al., 1977]. This factor may be explored
intuitively by condensing internal nodes to a single degree of
freedom for a two-slit disc. Clearly, conservation of mass dic-
tates that the resuiting 2 x 2 matrix is symmetric with the off
diagonal terms the negative of the diagonal.

The conductivity tensor K may be considered equivalent to
a single multinoded element. Flow within the fissure is con-
trolled only by the boundary conditions applied to the inter-
nal nodes. The steady behavior of an assemblage of discs may
therefore be determined by assembling the multinoded ele-
ments into a global conductance matrix. Conductivity terms
for nodes common to maultiple discs are merely summed ac-
cording to usual finite element convention. This results in a
positive definite, symmetric, and sparsely populated globai
matrix. Since the functions of the elemental and global con-
ductance matrices are identical, the global matrix will simi-
larly be referred to in the following as K.
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Transient Solution

For a system of interconnected fissures, equation (16) may
be assembled from the foregoing and solved for steady state
conditions. For transient analysis, the finite element statement
at any specific time t is given as

Ko, + 8¢, = q, (£7)

where K is the same giobal geometric conductivity tensor de-
fined above, § is the diagonal matrix of fissure aquifer storati-
vity terms, q, is the vector of prescribed nodal discharges at
time 1, and ¢, and ¢, are vectors of nodal hydraulic potentials
and time derivatives of potential at time ¢, respectively.

The elements of the diagonal storativity matrix require that
specific storage S, per unit area and mean aperture for the
fissure aquifer b are defined. This, in itself, is not a trivial task
as fissure storalivity may be shown to be a strongly nonlinear
funciion of effective stress [Elsworth and Goodman, 1985]. In
all applications discussed in the following it is assumed that
fissure storativity is constant over the range of applied ef-
fective stresses [Doe et al., 1982].

The 1otal storativity § for a single fissure disc is defined as

S=I b5, 40 (18}
18]
where the integration is performed over the area of the disc.
This integral may be readily evaluated for any simple circular
disc or other arbitrary elliptical or rectangular closed domains
as required in the above. The only item remaining is to define,
in a systematic manner, how the total storativity may be dis-
tributed between retained nodal degrees of freedom. Any con-
venient analysis may be employed whereby a tributary area is
ascribed to a singie node which will control discharge of that
region. Simple division of the domain into tributary units or
coarse meshing of finite clements may be used to evaluate the
consistent storativity vector 8 as
Se=b J NN, dQ (19)
1
where N; and N; are basis functions for plane elements
[Zienkiewicz, 19773 Coarser coverage of finite elements com-

bined with reduced integration could be used than would be
required to accurately define the conductivity of the dise using
finite element procedures. This procedure, however, negates
one of the main motivations for development of the boundary
element technique in this particular appleation in that inter-
nal discretization into elements is not required. In addition,
consistent formuiations have shown poor performance in tran-
sient solution [Newman and Narasimhan, 1977] and lumped
description of storage potential is preferred. For these reasons
a simpler procedure is used whereby the total disc storativity
is divided between nodes ranked proportionately to the mag-
nitude of the diaponal term in the conductance matrix K.

Since storativity is lumped only at the retained internal
nodes, the magnitude of the terms within the vector S may be
determined lrom

) o
S=m[l{] i=j (20

§=0 Psf
where § is appropriately defined in equation (18). The ration-
ale behind adopting this procedure is that for flow within an
isotropic domain the ratio K/S is rctained constant for the
matrix identities. This assumption is somewhat arbitrary, al-
though in the light of uncertainty regarding consistent formu-
lation by finite element analysis, it is not considered unreaiis-
tic. Any inaccuracics introduced by this assumption may be
examined in the light of the validation exercises following,. It is
apparent, from these results, that the approximation adopted
in evaluating 8§ does not markedly affect precision. This is
especially apparent as the number of fissures composing the
network is increased. Since this is the ultimate goal of the
formulation, this is not considered an overly restrictive re-
quirement.

Implicit Time Integration

The general finite element matrix identity given in equation
{17} is exact for any moment in time. If a time step At is
chosen, equation {17} may be rewritten {or time t + At as

Kyon + S50 = qn

where identities K and 8 remain unchanged. If the variation in

(22)
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nodal hydraulic potential is assumed linear within the in-
cremental time step At, then the time derivative of potential
may be approximated as

1
‘{’H—Ar - E (¢r+m - ¢r) (23}

which on resubstitution into equation (22} yields for fully im-
plicit application

Goa = KO g (24
where
. s
Qrvar = Gerar +E¢r (25}
and
s
K* = K 4+ v (26)

Cast in this form, equation (24) may be assembled, triangu-
larized, and used at a suitable incremental time step. Implicit
integration in time ensures that time increments of any mag-
nitude may be used with guaranieed stability [Polivka and
Wilson. $976; Neuman and Narasinthan, 1977). The factored
form of K* retains the symmetric and sparsely populated
nature of the original global matrix of equation (16). Refor-
mation of equation (24) is only required if significant changes
in storativity or conductivity of the fissures occur or if it is
desired to modily the time increment Ar.

VALIDATION

Validation of the proposed solution procedure is difficult in
the absence of an analytical solution for the specific problem
geometry. Appropriate validation exercises completed in the
following are (1) comparison of the predicted transient re-
sponse with a finite element representation of a single, circular
fissure disc, and (2) comparison of a simple series fissure net-
work with a transient analytical solution,

Circular Fissure Disc

A single circular fissure dis¢ s chosen as the basic subordi-
nate geometric unit comprising a system of fissures. If it is
possible to show that the transient performance of a single
disc compares favorably with some chosen benchmark, it is
reasonable to project that an assembly of discs would produce
similarly valid results. In the absence of an analytical standard
with which to compare the boundary element solution pro-
cedure, a finite element model of identical geometry is used.

A disc diameter to shit length ratio (d/)) of two is chosen for
the purpose of validation. The slits are disposed symmetrically
aboul the origin in such a manner as to retain symmetry in
both horizontal and vertical sections. The separation between
slit centers is cqual to the disc radius (d/2). The ratio of disc
hydraulic transmissivity Kb and storativity §b is equal to
unity, The boundary element and finite element idealizations
of the disc geometry are illustrated in Figure 4.

Half symmetry in the finite clement model uses 28 nine-
noded Lagrangian elements comprising a total of [35 degrees
of freedom. The curved elements accurately describe the true
form of the fissurc cdge although, at the chosen density of
coverage, this is not of major importance. In the simplest
boundary clement discretization of the disc a total of eight
boundary and four internal slit elements are used. All are
three-noded isoparametric elements cnabling the curved fis-
sure edge to be accurately represenied. This factor is more
important for the boundary element discretization given the
relatively sparing edge coverage. A total of 26 nodes and cor-
responding single degrees of freedom exist for the initial
system, although this may be condensed down to describe
performance purely in terms of the internal nodes. Thus any-
where between a maximum of 10 and a minimum of 2 internal
degrees of freedom may be retained for the system.

In addition to performing the analysis with internal nodes
located only on the intersection traces with other fissures, ad-
ditional “virtual” nodes may be sct within the body of the disc.
This may most simply be achieved if additional internai slit
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Fig. 8. Transicni response of discharge at slit | for finite element and boundary element znalysis cases i~iii.

thereby optimize the anticipated transient performance. It is
timely to mention that although the internal elements math-
y emnatically represent slits, they make no longitudinal contri-
bution to flow along their axcs. The combinations of retained
nodal degrees of freedom used in the following studies are

elements are dispersed in strategic locations. These “virtual”
slits serve to further distribute the storativity of the disc and
provide more complete representation of the in-fissure pres-
sure transients. As such, the internal nodes may be useful in
enhancing the early hydraulic response of the fissure discs and
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Fig. 9. Transient response of discharge at slit 1 for finite element and boundary element analysis cases v-viii.
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illustrated in Figure 5 for a total of eight cases identified
sequentiaily as i-viil. Solid circles denote a single retained
degree of freedom.

A single form of hydraulic leading is used in all validation
exercises. The distribution of total head within the disc is
initially constant and equal to zero (t = 07). A unit head is
applied to slit | at time ¢ = 0*, and the variation in hydraulic
potential at slit 2 is monitored. Quantitative evaluations of the
influent fluid Aow at slit § and the change in head at slit 2 are
two solution parameters available from the boundary element
formulation regardless of the number of nodes retained in the
system and are therefore used as performance indices,

The transient response of total head at slit 2 is illustrated in
Figure 6 where only the internal nodes are retained. With five
nodes retained per slit, the length weighted mean of ail nodal
values is reported in Figure 6. It is evident that little advan-
tape is realized in retaining extra nodes on the individual siits
with regard 1o the transient head response. The difference be-
tween the two boundary element solutions exists only at small
dimensionless times. There appears, however, to be a discrep-
ancy between the boundary element and finite element simula-
tions in this initial period. The magnitude of the offset may be
acceptable, however, depending on the particular application.

If single or triple “virtnal™ nodes are added to the configura-
tion {cases ii and iii), the solution accuracy improves slightly,
as Hlustrated in Figure 7. Further improvement is possible if
extra internal and edge nodes are utilized. A total of nine
internal and two edge nodes are used in case vii with the
results similarly illustrated in Figure 7. It is important to note
that only a relatively small improvement in responsc is &t-
tained for a drastic increase in the number of retained and
generated degrees of freedom. Using tripie “virtual” nodes, five
degrees of freedom are retained; in case vil a total of 21 de-
grees of freedom arc retained.

Transient discharges evajuated at the sole exit from the
fissure disc are illustrated in Figures 8 and 9 for different
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Fig. 10. Perspective view of {a) a three-dimensional series fssure
network and {b) corresponding hydraulic loading sequence.
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Fig. 11. Tramsient response of the series fissure system. Analytical

versus numerical characterizations,

nodal and elemental densities, Log-log plots of dimensionless
discharge and dimensionless time are used to present response
aver Tour log cycles of time. Where only a single degree of
freedom is retained per slit, results are presented in Figure 8.
The geometry without “virtual” nodes exhibits poor per-
formance at small dimensionless times, but very good agree-
ment is attained with the finite element control at large dimen-
sionless times. Where additional virtual nodes are incorpor-
ated into the disc geometry as in cases ii and iii, the early time
performance is improved, however, to the detriment ol the
long-term performance. It is believed that this paradox results
from the presence of stored fluid, present within the system,
that is available for discharge at large dimensionless times
having not been transmitted previously. It is likely that re-
quiring a major portion of the fissure storage to be located
between the slits prevents the portion of the fissure close to
the edge from draining effectively in the short term. Thus
initial drainage is deficient with the net result that a great deal
of storape is available for depletion as the transient distur-
bance reaches progressively further outward. The ability of the
disc to discharge this fluid early is enhanced over the 2 degrees
of freedom case due to more accurate transient representation
of internal heads and hydraulic gradients. The magniiude of
the initial gradient at ¢ = 0% is controlled by the separation of
slit { and the closest “virtual” node. The effect of this is clearly
illustrated in the early system responses of Figure 8, where
“virtual” nodes located progressively closer to the disturbed
slit yield better approximations of the early discharge. Nu-
merical singuiarity considerations provide a threshoid limit of
separation, however, closer than which adjacent nedes should
not be located.

The transient responses for discretization cases v—viii are
iliustrated in Figure 9. [t is evident that retaining ali five slit
nodes for solution and adding four boundary nodes as in case
vi does not improve accuracy over the case of a 2 degrees of
freedom disc (case i). Successive addition of internal niodes, as
iljustrated in Figure 9, considerably benefits the early response
with no detrimental effects in the long term. For discretization
case vii, no adverse effect on the respense was observed where
the slits are represented by a single degree of freedom with the
remaining edge and internal nodes retained. This performance
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is encouraging in that it represents a total of only 13 up-
knowns.

Rectangular Fissure Model

Since the behavior ol a single fissure disc will represent only
one component of the complete fracture network, it is appro-
priate to evaluate the ramifications of the previous validation
studies in a global context. It does not necessarily follow that
any deficiencies encountered in representing the transient be-
havior of a single fissure will be evident! either to the same
degree or even at all in the global network. It is important
therefore to evaluate rigorously the performance of the net-
work, where possible, against analytical solution.

The geometry of a simple three-fissure network is iilustrated
in Figure 10. For the case where fissure interseciions provide
no additional friction loss, the transient response of the four-
noded system is directly analogous to heat conduction within
an infinite plate, cooled from an ambient temperature on one
surface and perfectly insulated on the other surface [ Terzaghi,
15437. A parallel is drawn in this work where the change in
system pressure head is monitored with time. A comparison
between the analytical and assembled boundary element solu-
tions is illustrated in Figure 11. Each rectangular fissure of
aspect ratio equal to unity is represented externally by eight
elements and 16 nodes. The individual fissures are condensed
to 2 degrees of freedom, one at each end. Excelient correspon-
dence between the analytical and numerical results is achieved
even for the extremely sparse coverage of only three fissures,

CONCLUSIONS

A numerical method is presented 1o evaluate the transient
response of discretely fractured systems in a systematic and
computationally economic manner. All reductions for the
boundary procedure are at the elemental or individual disc
level prior to global network assembly. Cast in this form, the
solution technique is ideally suited to preprocessing by mini-
computer to reduce the number of disc degrees of freedom to a
desired minimum level. With this initial reduction completed
at the disc level, global assembly may be completed by file
uploading to a machine of larger capacity. The initial re-
duction procedure is especially expedient for transient analysis
where multiple time-stepping iterations will be completed. The
traditional advantages of boundary element solution, namely,
ease of data input and sysiematic element generation, are re-
tained. Aithough developed with specific reference o circular
discs, the solution method may accommodate fissures of any
arbitrary edge contour if field data merit their inclusion, The
resulting global matrices are, for all cases run to date, well
conditioned, sparsely populated, symmetric, and, for all fuily
connected networks, positive definite.

The performance of both individual fissures and assembled
fissure networks is illustrated to be satisfactory. The early re-
sponse of individual units is shown to be strongly dependent
on the number of internal and edge nodes retained for the
global analysis. Extra nodes retained on the individual fissure
slits apparently offer little advantage in accuracy and penatize
solution computational economy.

Although the early transient response is lacking for rela-
tively sparing nodal coverage of an individual disc, this factor
will be critical only if gauging the early response is important
or, alternately, il the early response markedly affects the long-
term response, The true importance of this apparent deficiency
in the analysis procedure may only be determined for each
specific application by the individual user. It appears, how-
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ever, from the validation studies that the short-term per-
formance does not adversely affect the long-term response. In
this vein the performance of a simple four-noded network is
illustrated to perform very well. Thus the previously imposed
constraint that an individual disc must perform exceptionally
well to guarantee performance fidelity of an assemblage may
well be overdemanding. It appears from the case fllustrated in
Figure 11 that the poor ecarly performance aspects of the
method are apparent neither at relatively large dimensionless
times or for fissure networks containing muitiple units. The
validity of this observation may only be compared against
future numerical or physical studies.

NoTaTION

A disc geometric conductivity matrix with respect Lo
velocities.
fissure hydraulic conductivity, disc geometric
hydraulic conductivity tensor with respect to
discharge, and modified tensor, respectively.
M unit source strength.
N,; element basis function.
8. 8.8 specific storape, storativity, and diagonal
storativity mairix, respectively.
4, p,, @, jy  kernel functions for a unit source.
V., @ matrices containing integrated kernel functions.
a premuitiplication factor to convert nodat velocity
into nodal discharge.
b fissure aperture.
c{i) free term.
d disc diameter,
h™ vector of element shape functions.
I fssure intersection slit jength.
fi domain unit outer normal.
i location of unit line or point source.
j location of peint of interest,
q. 9* vector of prescribed nodal discharges, modified
vector.
r o radius i to .
1, At time, increment of time.
e(fiv nodal velocity, vector of nodal velocities normal
to the boundary.
w; integration weight.

K, K, K*

=

x, y Cartesian coordinate system.
$t). . ¢ nodal hydraulic head, vector of nodal heads,
vector of time derivatives of nodal heads,
6; Kronecker delta §;=1,i=j:9;=0,i+]

Q domain.
I domain boundary.
&, 1 intrinsic coordinates for isoparametric element.
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