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CHAPTER 7

Consolidation Theory

7.1 Introduction

As explained in Chapter 3, consolidation is the gradual reduction in volume
of a fully saturated soil of low permeability due to drainage of some of the
pore water, the process continuing until the excess pore water pressure set
up by an increase in total stress has completely dissipated: the simplest case
is that of one-dimensional consolidation, in which a condition of zero
lateral strain is implicit. The process of swelling, the reverse of con-
solidation, is the gradual increase in volume of a soil under negative excess
pore water pressure.

Consolidation settlement is the vertical displacement of the surface
corresponding to the volume change at any stage of the consolidation
process. Consolidation settlement will result, for example, if a structure is
built over a layer of saturated clay or if the water table is lowered
permanently in a stratum overlying a clay layer. If, on the other hand, an
excavation is made in a saturated clay, heaving (the reverse of settlement)
will result in the bottom of the excavation due to swelling of the clay. In
cases in which significant lateral strain takes place, there will be an
immediate settlement due to deformation of the soil under undrained
conditions, in addition to consolidation settlement. Immediate settlement
can be estimated using the results from elastic theory given in Chapter 5.
This chapter is concerned with the prediction of both the magnitude and
rate of consolidation settlement.

The progress of consolidation in situ can be monitored by installing
piezometers to record the change in pore water pressure with time. The
magnitude of settlement can be measured by recording the levels of suitable
reference points on a structure or in the ground: precise levelling is essential,
working from a benchmark which is not subject to even the slightest
settlement. Every opportunity should be taken of obtaining settlement data
as it is only through such measurements that the adequacy of theoretical
methods can be assessed.
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7.2 The Oedometer Test

The characteristics of a soil during one-dimensional consolidation or
swelling can be determined by means of the oedometer test. Fig. 7.1 shows
diagrammatically a cross-section through an oedometer. The test specimen
is in the form of a disc, held inside a metal ring and lying between two
porous stones. The upper porous stone, which can move inside the ring with
a small clearance, is fixed below a metal loading cap through which pressure
can be applied to the specimen. The whole assembly sits in an open cell of
water to which the pore water in the specimen has free access. The ring
confining the specimen may be either fixed (clamped to the body of the cell)
or floating (being free to move vertically): the inside of the ring should have
a smooth polished surface to reduce side friction. The confining ring
imposes a condition of zero lateral strain on the specimen, the ratio of
lateral to vertical effective stress being K, the coefficient of earth pressure
at rest. The compression of the specimen under pressure is measured by
means of a dial gauge operating on the loading cap.

The test procedure has been standardized in BS 1377 [7.4] which
specifies that the oedometer shall be of the fixed ring type. The initial
pressure will depend on the type of soil, then a sequence of pressures is
applied to the specimen, each being double the previous value. Each
pressure is normally maintained for a period of 24 hours (in exceptional
cases a period of 48 hours may be required), compression readings being

% |~ Water

|- Confining
ring

Specimen
Fig. 7.1 The oedometer.
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observed at suitable intervals during this period. At the end of the
increment period, when the excess pore water pressure has completely
dissipated, the applied pressure equals the effective vertical stress in the
specimen. The results are presented by plotting the thickness (or percentage
change in thickness) of the specimen or the void ratio at the end of each
increment period against the corresponding effective stress. The effective
stress may be plotted to either a natural or a logarithmic scale. If desired,
the expansion of the specimen can be measured under successive decreases
in applied pressure. However, even if the swelling characteristics of the soil
are not required, the expansion of the specimen due to the removal of the
final pressure should be measured.

The void ratio at the end of each increment period can be calculated from
the dial gauge readings and either the water content or dry weight of the
specimen at the end of the test. Referring to the phase diagram in Fig. 7.2,
the two methods of calculation are as follows.

(1) Water content measured at end of test = w,
Void ratio at end of test = e; = w, G, (assuming S, = 100%;)
Thickness of specimen at start of test = H,,
Change in thickness during test = AH
Void ratio at start of test = e, = e, + Ae

where:
Ae 1 +e¢
AH - H, 7.1

In the same way Ae can be calculated up to the end of any increment
period.

i
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Fig. 7.2 Phase diagram.
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2) Dry weight measured at end of test = M (i.e. mass of solids)
Thickness at end of any increment period = H,
Area of specimen = A

Equivalent thickness of solids = H, = M,/AG
Void ratio, ’ /AGsPw

Oy = ————— = e —
A A A 1.2

Compressibility Characteristics

Typical plots of void ratio (e) after consolidation, against effective stress (6”)
for a satl.lrated clay are shown in Fig. 7.3, the plots showing an initial
compression followed by expansion and recompression (cf. Fig. 4.10 for
isotropic consolidation). The shapes of the curves are related to t.he: stress
hlsto'ry.of the clay. The e-log ¢’ relationship for a normally consolidated
clay is l'mear (or very nearly so) and is called the virgin compression line. If
a clay is overconsolidated its state will be represented by a point on t.he
expansion or recompression parts of the e-log ¢’ plot. The recompression
curve ultimately joins the virgin compression line: further compression then
occurs along the virgin line. During compression, changes in soil structure
continuously take place and the clay does not revert to the original
structure during expansion. The plots show that a clay in the overcon-

Virgin
/, compression
{slope C,)

€ e| Recompression

/

Expansion

o’ .
|Og a

Fig. 7.3 Void ratio-effective stress relationship.
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solidated state will be much less compressible than the same clay in a
normally consolidated state.

The compressibility of the clay can be represented by one of the
following coefficients.

(1) The coefficient of volume compressibility (m,), defined as the volume
change per unit volume per unit increase in effective stress. The units of m,
are the inverse of pressure (m?/MN). The volume change may be expressed
in terms of either void ratio or specimen thickness. If, for an increase in
effective stress from aj to o' the void ratio decreases from e, to ey, then:

e = (————e?’e‘,) (13)
1+e0 01—0'0
=_1_ Eﬁ_{'_‘ (1.4)
Hy\ 6} — 0%

The value of m, for a particular soil is not constant but depends on the stress
range over which it is calculated. BS 1377 specifies the use of the m,
coefficient calculated for a stress increment of 100 kN/m? in excess of the
effective overburden pressure of the in-situ soil at the depth of interest,
although the coefficient may also be calculated, if required, for any other
stress range.

(2) The compression index (C.) is the slope of the linear portion of the
e-log 6’ plot and is dimensionless. For any two points on the linear portion
of the plot:

c =54 (1.5)

!

1
log P

The expansion part of the e-log o’ plot can be approximated to a straight
line the slope of which is referred to as the expansion index C,.

Preconsolidation Pressure

Casagrande proposed an empirical construction to obtain from the e-log 6’
curve for an overconsolidated clay the maximum effective vertical stress
that has acted on the clay in the past, referred to as the preconsolidation
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log a
Fig. 74 Determination of preconsolidation pressure.

pressure (a.). Fig. 7.4 shows a typical e-log ¢’ curve for a specimen of clay,
initially overconsolidated. The initial curve indicates that the clay is
undergoing recompression in the oedometer, having at some stage in its
history undergone expansion. Expansion of the clay in situ may, for
example, have been due to melting of ice sheets, erosion of overburden or a
rise in water table level. The construction for estimating the precon-
solidation pressure consists of the following steps.

1. Produce back the straight line part (BC) of the curve.

2. Determine the point (D) of maximum curvature on the recompression
part (AB) of the curve.

3. Draw the tangent to the curve at D and bisect the angle between the
tangent and the horizontal through D.

4. The vertical through the point of intersection of the bisector and CB
produced gives the approximate value of the preconsolidation
pressure.

Whenever possible the preconsolidation pressure for an overcon-
solidated clay should not be exceeded in construction. Compression will
not usually be great if the effective vertical stress remains below o;: only if
o, is exceeded will compression be large.
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In-Situ e-log ¢’ Curve

Due to the effects of sampling and preparation the specimen in an
oedometer test will be slightly disturbed. It has been shown that an increase
in the degree of specimen disturbance results in a slight decrease in the slope
of the virgin compression line. It can therefore be expected that the slope of
the line representing virgin compression of the in-situ soil will be slightly
greater than the slope of the virgin line obtained in a laboratory test.

No appreciable error will be involved in taking the in-situ void ratio as
being equal to the void ratio (e,) at the start of the laboratory test.
Schmertmann [7.17] pointed out that the laboratory virgin line may be
expected to intersect the in-situ virgin line at a void ratio of approximately
0-42 times the initial void ratio. Thus the in-situ virgin line can be taken as
the line EF in Fig. 7.5 where the coordinates of E are log o and e, and Fis
the point on the laboratory virgin line at a void ratio of 0-42 ¢,.

In the case of overconsolidated clays the in-situ condition is represented
by the point (G) having coordinates o}, and e, where g§ is the present
effective overburden pressure. The in-situ recompression curve can be
approximated to the straight line GH parallel to the mean slope of the
laboratory recompression curve.
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Fig. 7.5 In-situ e-log ¢’ curve.
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7.7 Terzaghi’s Theory of One-Dimensional Consolidation

The assumptions made in the theory are:

. The soil is homogeneous.

_ The soil is fully saturated.

. The solid particles and water are incompressible.

. Compression and flow are one-dimensional (vertical).

. Strains are small.

. Darcy’s law is valid at all hydraulic gradients.

. The coefficient of permeability and the coefficient of volume com-
pressibility remain constant throughout the process.

8. There is a unique relationship, independent of time, between void

ratio and effective stress.

- BV I RS e

Regarding assumption 6, there is evidence of deviation from Darcy's law
at low hydraulic gradients. Regarding assumption 7, the coefficient of
permeability decreases as the void ratio decreases during consolidation.
The coefficient of volume compressibility also decreases during con-
solidation since the e-g’ relationship is non-linear. However for small stress
increments assumption 7 is reasonable. The main limitations of Terzaghi’s
theory (apart from its one-dimensional nature) arise from assumption 8.
Experimental results show that the relationship between void ratio and
effective stress is not independent of time.
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The theory relates the following three quantities.

1. The excess pore water
pressure (u).
2. The depth (z) below the top of the clay layer.

y ?l:)i:;f:srsaznde:zm;nt haying dimensions dx, dy and dz within a clay layer
. , as shown in Fig. 7.16. An i i
N aopliod (6 the s g. 7.16. An increment of total vertical stress
The flow velocity through the element is given by Darcy’s law as
. oh
v, =ki, = —k—
0z

Since any change in total h. i
pressure: ead (h) is due only to a change in pore water

k ou

Yw 02

z

The condition of continuity (Equation 2.7) can therefore be expressed as
k %u

ko _dav
- dxdydz = a

(7.14)

The rate of volume change can be expressed in terms of m,:

ﬂ’__ do’
= m,,ﬁ-t— dxdyd:z

The . .
total stress increment is gradually transferred to the soil skeleton

Fig. 7.16 Element within a clay layer.
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increasing effective stress, as the excess pore water pressure decreases.
Hence the rate of volume change can be expressed as

Si—‘i= —m,,gy-dxdydz (7.15)
dt ¢
Combining Equations 7.14 and 7.15,
ou_ k du
Moy~ 7w 022
or
_6_1: =c ﬂ (7.16)
ot Yozt

This is the differential equation of consolidation, in which

k (7.17)
MY

¢, being defined as the coefficient of consolidation, suitable units being
v a .
m?/year. Since k and m, are assumed constant, c, 1S constant during

consolidation.

Cy =

Solution of the Consolidation Equation

The total stress increment is assumed to be applied instantage_opsly, and at
zero time will be carried entirely by the pore water, 1.¢. t_h_e initial .v.alue: of
excess pore water pressure (u;) is equal to A and the initial condition is:

u=u for0<z<2d whent=0

The upper and lower boundaries of the clay layer are assumed to be free
draining, the permeability of the soil adjacent to each boundafy. being very
high compared to that of the clay. Thus the boundary conditions at any
time after the application of Ag are:

u=0 forz=0 andz=2d whent>0

The solution for the excess pore water pressure at depth z after time ¢ is:

z 2.2
s (1] . nmz . nnz _n'mict 718
u= .Zl (2‘[ u‘sma—dz>(smﬁ—)exp< ¥ ) (7.18)
0
where d = length of longest drainage path, and u, = initial excess pore
water pressure, in general a function of z.
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For the particular case in which u; is constant throughout the clay layer:

"= 2y, . nnz ninlc,t
u= Y -n—;(l - cosnn)(smﬂ—)cxp(—-—‘ﬁ—z—> (7.19)

n=1

When niseven, (1 — cosnr) = 0, and when nis odd, (1 — cos nm) = 2. Only
odd values of n are therefore relevant and it is convenient to make the
substitutions:

n=2m+1

and
= g(2m +1)

It is also convenient to substitute
c,t

T, = iy (7.20)

a dimensionless number called the time factor. Equation 7.19 then becomes
2 2u . Mz 2

u= "2::0 o (sm y )exp(——M T,) (7.21)

The progress of consolidation can be shown by plotting a series of curves
of u against z for different values of t. Such curves are called isochrones and
their form will depend on the initial distribution of excess pore water
pressure and the drainage conditions at the boundaries of the clay layer. A
layer for which both the upper and lower boundaries are free-draining is
described as an open layer: a layer for which only one boundary is free-
draining is a half-closed layer. Examples of isochrones are shown in
Fig. 7.17. In part (a) of the figure the initial distribution of , is constant and
for an open layer of thickness 2d the isochrones are symmetrical about the
centre line. The upper half of this diagram also represents the case of a half-
closed layer of thickness d. The slope of an isochrone at any depth gives the
hydraulic gradient and also indicates the direction of flow. In parts (b) and
(c) of the figure, with a triangular distribution of u;, the direction of flow
changes over certain parts of the layer. In part (c) the lower boundary is
impermeable and for a time swelling takes place in the lower part of the
layer.

The degree of consolidation at depth z and time ¢ can be obtained by
substituting the value of u (Equation 7.21) in Equation 7.13, giving

U,=1- :2: —::!—(sin%i) exp(~M2T) (1.22)
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Half closed layer

In practical problems it is the average degree of consolidation (U) over the
depth of the layer as a whole that is of interest, the consolidation settlement
at time t being given by the product of U and the final settlement. The
average degree of consolidation at time ¢ for constant u; is given by

24

1
Zij‘ udz

Uv=1-—9%>__
U;
—1-"% 2 exp(—M2T) (7.23)
m=0 Al2 g

The relationship between U and T, given by Equation 7.23 is represented
by curve 1 in Fig. 7.18. Equation 7.23 can be represented almost exactly by
the following empirical equations:

for U <060, T,= % U? (7.243)

for U > 060, T,= —0-933log(l — U) — 0-085 (7.24b)

If u; is not constant the average degree of consolidation is given by
24

J.udz

U=l—1?d

f u,dz

[

(7.25)

where
2d

J udz = area under isochrone at the time in question
0

and

u;dz = area under initial isochrone

0{———‘§

(For a half-closed layer the limits of integration are 0 and d in the above
equations.)
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Fig. 7.18 Relationships between average degree of consolidation and time factor.
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Fig. 7.19 Initial variations of excess pore water pressure.

The initial variation of excess pore water pressure in a clay layer can
usually be approximated in practice to a linear distribution. Curves 1,2 and

3in Fig. 7.18 represent the solution of the consolidation equation for the
cases shown in Fig. 7.19.

7.8 Determination of- Coefficient of Consolidation

The value of ¢, for a particular pressure increment in the oedometer test can
be determined by comparing the characteristics of the experimental and
theoretical consolidation curves, the procedure being referred to as curve
fitting. The characteristics of the curves are brought out clearly if time is
plotted to a square root or a logarithmic scale. Once the value of ¢, has been
determined, the coefficient of permeability can be calculated from Equa-
tion 7.17, the oedometer test being a useful method for obtaining the
permeability of a clay.
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The Log Time Method (due to Casagrande)

The forms of the experimental and theoretical curves are shown in
Fig. 7.20. The experimental curve is obtained by plotting the dial gauge
readings in the oedometer test against the logarithm of time in minutes. The
theoretical curve is given as the plot of the average degree of consolidation
against the logarithm of the time factor. The theoretical curve consists of
three parts: an initial curve which approximates closely to a parabolic
relationship, a part which is linear and a final curve to which the horizontal
axis is an asymptote at U = 1-0 (or 1007%). In the experimental curve the
point corresponding to U = 0 can be determined by using the fact that the
initial part of the curve represents an approximately parabolic relationship
between compression and time. Two points on the curve are selected (A and
B in Fig. 7.20) for which the values of ¢t are in the ratio of 4:1, and the
vertical distance between them is measured. An equal distance set off above
the first point fixes the point (a,) corresponding to U = 0. As a check the
procedure should be repeated using different pairs of points. The point
corresponding to U = 0 will not generally correspond to the point (a,)
representing the initial dial gauge reading, the difference being due mainly
to the compression of small quantities of air in the soil, the degree of
saturation being marginally below 100%;: this compression is called initial
compression. The final part of the experimental curve is linear but not
horizontal and the point (a, o) corresponding to U = 1009 is taken as the
intersection of the two linear parts of the curve. The compression between
the a, and a, o, points is called primary consolidation and represents that
part of the process accounted for by Terzaghi’s theory. Beyond the point
of intersection, compression of the soil continues at a very slow rate for
an indefinite period of time and is called secondary compression.
The point corresponding to U = 507 can be located midway between
the a, and a, oo points and the corresponding time ¢ 5o obtained. The value
of T, corresponding to U = 507 is 0-196 and the coefficient of con-

solidation is given by

. 2
0-196d (1.26)

tso

Cy =

the value of d being taken as half the average thickness of the specimen for
the particular pressure increment. BS 1377 states that if the average
temperature of the soil in situ is known and differs from the average test
temperature, a correction should be applied to the value of c,, correction

factors being given in the standard.
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A TRIBUTE TO MAURICE A. BIOT

Maurice A. Biot (1905-1985)

In presenting Maurice Anthony Biot with the Timoshenko Medal in 1962, R. D. Mindlin,
the eminent Professor at Columbia University, wrote: *Fundamentally, Tony Biot has a
strong consciousness of the physical world around him. He has a keen insight which enables
him to recognize the essential features of a physical phenomenon and build them into a
mathematical model without blindly including non-essentials. Then he has, at his fingertips,
a vast array of the tools of mathematical analysis and analytical methods of approximation
which he uses skilifully to extract, from the model, predictions of the hitherto unpredictable.
They are all too few such men these days.” These words by Mindlin accurately portrayed
M. A. Biot as an intuitive engineer, who could master the advanced tools of a physical
scientist, and as a scientist who did not lose sight of the physical world.

Maurice Biot was born in Antwerp, Belgium on May 25th 1905. The war in 1914-1918
and the siege of Antwerp caused the Biot family to travel first to London, then Paris, and
finally settling in Chambéry, France. These moves matured the young Biot and exposed
him to several languages.

Later returning to Antwerp, M. Biot concluded his secondary school. In 1923 he enrolled
at a school in Brussels for preparatory courses in mathematics, and in 1924 was admitted
at the Université catholique de Louvain. It was at this time that Biot showed his insatiable
appetitie for knowledge. While pursuing his studies in Engineering, Biot also attended
courses in Philosophy (he was awarded a Bachelor degree in Philosophy in 1927) and
Economics. He obtained a Mining Engineering degree in 1929, and an Electrical Engineering
degree in 1930.

After defending his thesis entitled “Theoretical studies on induced electrical currents”,
Biot was awarded a Doctor of Science degree in 1931. The sponsorship of the Belgian
American Educational Foundation allowed Biot to spend the next two years in the U.S.
(1931-1933) at the California Institute of Technology in Pasadena. It was at Cal Tech
where he first met and worked with Theodore von Karman, who had arrived in the U.S. in
1929. Biot acquired a Ph.D. in Aeronautical Sciences in 1932 by defending his work
*Concept of response spectrum based on the earthquake acceleration.” The methodology
brought great simplifications to the analysis of structures under transient loading and has
since been used as a tool in earthquake-proof design. It was during the same period that he
published his first papers on a new approach to the nonlinear theory of elasticity accounting
for the effect of initial stress. By that time he had published about a dozen scientific papers
and patented his first three inventions.
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After a few months at the University of Michigan, Biot returned to Europe. In 1933 and
1934, the Belgian National Scientific Research Foundation granted him the opportunity to
travel to Delft, Gottingen, and Zurich. With such sharp intelligence he was soon recognized
by the university community. In 1934, Biot started his academic career as a teacher of
applied mathematics at Harvard University. In June 1935, he returned to Pasadena as an
Advanced Fellow of the Belgian American Educational Foundation. By 1936, Biot was
elected to the faculty at his Alma Mater, the Université catholique de Louvain, where he
taught Elasticity and Analytical Mechanics. From 1937 to 1946, Biot was a Professor of
Theoretical Mechanics and Physical Mathematics at Columbia University. In 1946 Brown
University offered him the position of Professor in Applied Physics and Sciences, which he
held until 1952.

It was in 1940 that the monograph Mathematical Methods in Engineering was written
with Th. von Karmaén. Its translation into nine languages is evidence of its influence on
several generations of engineers. Later in his career he wrote two more books: Mechanics
of Incremental Deformations (1965) and Variational Principles in Heat Transfer (1970).

The U.S. fascinated Biot, who found in it an environment conducive for research. Biot
became an American citizen in 1941. The war in Europe came to Biot as a major distress
and he took an active role in it. On leave from Columbia University, he worked at the Cal
Tech Aeronautical Laboratory on problems of vibration and flutter, on the dynamic
stability of projectiles and also on anti-submarine shell impact. During the war, as a
Lieutenant Commander in the U.S. Navy, Biot headed the Structural Dynamics Section of
the Bureau of Aeronautics in Washington, D.C. (1943-1945), and later conducted technical
missions in Europe with combat troops.

By 1951, Biot had produced a large number of scientific works for Shell Development
Co., Comnell Aeronautical Laboratory, and for the U.S. Air Force. After 1952 Biot worked
largely alone as a consultant for various governmental agencies and industrial laboratories.
From 1969 to 1982, Biot was a consultant for Mobil Research and Development Cor-
poration in Dallas, in the area of Rock Mechanics.

Relocated in Brussels since 1970, Maurice Biot continued his research until his last day.
It was on one of his last trips to the U.S. that Biot felt the early signs of his illness that
would suddenly deprive him of his life on the 12th of September 1985, at the age of eighty.

The work and original contribution which distinguished Biot's career cover an unusually
broad range of science and technology including applied mechanics, sound, heat, ther-
modynamics, aeronautics, geophysics, and electromagnetism. The level of his work has
ranged from the highly theoretical and mathematical to practical applications and patented
inventions.

Aeronautical problems and fluid mechanics were the objects of most of his efforts during
the 1940s. He developed the three-dimensional aerodynamics theory of oscillating airfoils
along with new methods of vibration analysis based on matrix theory and generalized
coordinates. This led to widely applied design procedures of complex aircraft structures in
order to prevent catastrophic flutter. He also patented an electrical analogue flutter predictor
based on a simple circuit design which simulates aerodynamic forces. After the war he
continued work on non-stationary aerodynamic instability of thin supersonic wings, and
on the first evaluation of the transonic drag of an accelerated body.

In the 1950s, Biot’s work was concerned primarily with problems in solid mechanics,
porous media, thermodynamics, and heat transfer. He developed a new approach to the
thermodynamics of irreversible processes by introducing a generalized form of the free
energy as a key potential. The formulation was associated with new variational principles
and Lagrangian-type equations. The results with the introduction of internal coordinates
provided the thermodynamics foundation of a general theory of anisotropic viscoelasticity
and thermoelasticity. He later gave a systematic presentation of this work in a monograph
Variational Principles in Heat Transfer in 1970 and indicated its applicability to many other
problems such as those of elastic aquifers or neutron diffusion in nuclear reactor design.

Biot’s interest in the mechanics of porous media dated back to 1940 with a fundamental
paper in soil mechanics and consolidation. He returned to the subject in the 1950s in the
more general context of rock mechanics in connection with problems in the oil industry.
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On the basis of his earlier work in thermodynamics, he extended his theory to the acoustics
in porous media and showed that there existed three types of acoustic waves in such media.
In another contribution he was the first person to correctly provide the solution of the so-
called Stoneley wave, i.e. an interface wave between a fluid overlaying an elastic solid half-
space which, as some have argued, should more appropriately be named after him.

For a short period in the middle 1950s Biot became involved with rocket radio-guidance
problems and the question of disturbance from ground reflections. He showed that the
reflection of electromagnetic and acoustic waves from a rough surface may be replaced by
a smooth boundary condition. He also introduced a new approach to pulse generated
transient waves based on a continuous spectrum of normal coordinates. The combination
of the two methods provided the only practical solution at that time of some important
problems.

In a series of papers starting in 1957, Biot extended his earlier work in the mechanics of
initially stressed solids, developing a mathematical theory of folding instability of stratified
viscous and viscoelastic solids. He verified the results in the laboratory and applied them
to explain the dominant features of geological structures. In particular, he brought to light
the phenomenon of internal buckling of a confined anisotropic or stratified medium under
compressive stress and provided a quantitative analysis. He applied the theory with the
same success to problems of gravity instability and salt dome formation. In a later period
he presented a systematic treatment of the mechanics of initially stressed continua in the
monograph Mechanics of Incremental Deformations, published in 1965. In the 1970s Biot’s
formulation of the variational principle of virtual dissipation in the thermodynamics of
irreversible processes along with a new approach to open systems led to a synthesis of
classical mechanics and irreversible thermodynamics. He applied these new theories to
directly obtain the field equations in systems where deformations are coupled to thermo-
molecular diffusion and chemical reactions. On this basis he also further developed the
theory of porous media including heat and mass transport with phase changes and adsorp-
tion effects.

The honors that Biot received during his lifetime included the Timoshenko Medal of the
American Society of Mechanical Engineers (1962), the Th. von Karman Medal of the
American Society of Civil Engineers (1967), and an Honorary Fellow of the Acoustical
Society of America (1983). He was also a member of the U.S. National Academy of
Engineering.

(Compilation based on the “Note on Maurice Anthony Biot” by A. Delmer and A.
Jaumotte published in 1990 by the Académie Royale de Belgique, and on matenal supplied
by Madame M. A. Biot.)

A. H.-D. CHENG
E. DETOURNAY
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General Theory of Three-Dimensional Consolidation*

MaURICE A. Brot
- Columbia University, New York, New York

(Received October 25, 1940)

The settlement of soils under load is caused by a phenomenon called consolidation, whose
mechanism is known to be in many cases identical with the process of squeezing water out of
an elastic porous medium. The mathematical physical consequences of this viewpoint are
established in the present paper. The number of physical constants necessary to determine the
properties of the soil is derived along with the general equations for the prediction of settle-
ments and stresses in three-dimensional problems. Simple applications are treated as examples.
The operational calculus is shown to be a powerful method of solution of consolidation

problems.

INTRODUCTION

T is well known to engineering practice that a
soil under load does not assume an instan-
taneous deflection under that load, but settles
gradually at a variable rate. Such settlement is
very apparent in clays and sands saturated with
water. The settlement is caused by a gradual
adaptation of the soil to the load variation. This
process is known as soil consolidation. A simple
mechanism to explain this phenomenon was first
proposed by K. Terzaghi.! He assumes that the
grains or particles constituting the soil are more
or less bound together by certain molecular
forces and constitute a porous material with
elastic properties. The voids of the elastic skel-
eton are filled with water. A good example of
such a model is a rubber sponge saturated with
water. A load applied to this system will produce
a gradual settlement, depending on the rate at
which the water is being squeezed out of the
voids. Terzaghi applied these concepts to the
analysis of the settlement of a column of soil
under a constant load and prevented from lateral
expansion. The remarkable success of this theory
in predicting the settlement for many types of
soils has been one of the strongest incentives in
the creation of a science of soil mechanics.
Terzaghi’s treatment, however, is restricted to
the one-dimensional problem of a column under a
constant load. From the viewpoint of mathe-
matical physics two generalizations of this are

* Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.

1 K. Terzaghi, Erdbaumechanik ouf Bodenphysikalischer
Grundlage (Leipzig F. Deuticke, 1925); “Principle of soil
mechanics,”” Eng. News Record (1925), a series of articles.

VOLUME 12, FEBRUARY, 1941

possible : the extension to the three-dimensional
case, and the establishment of equations valid for

_any arbitrary load variable with time. The

theory was first presented by the author in rather
abstract form in a previous publication.? The
present paper gives a more rigorous and complete
treatment of the theory which leads to results
more general than those obtained in the previous
paper. _ '

The following basic properties of the soil are
assumed: (1) isotropy of the material, (2) re-
versibility of stress-strain relations under final
equilibrium conditions, (3) linearity of stress-
strain relations, (4) small strains, (5) the water
contained in the pores is incompressible, (6) the
water may contain air bubbles, (7) the water
flows through the porous skeleton according to
Darcy’s law. .

Of these basic assumptions (2) and (3) are
most subject to criticism. However, we should
keep in mind that they also constitute the basis of
Terzaghi's theory, which has been found quite
satisfactory for the practical requirements of
engineering. In fact it can be imagined that the
grains composing the soil are held together in a
certain pattern by surface tension forces and tend
to assume a configuration of minimum potential
energy. This would especially be true for the
colloidal particles constituting clay. It seems
reasonable to assume that for small strains, when
the grain pattern is not too much disturbed, the
assumption of reversibility will be applicable.

The assumption of isotropy is not essential and

tM. A. Biot, “Le probléme de la Consolidation des

Matieres “argileuses sous une charge,” Ann. Soc. Sci.
Bruxelles B55, 110-113 (1935).
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anisotropy can easily be introduced as a refine-
ment. Another refinement which might be of
practical importance is the influence, upon the
stress distribution and the settlement, of the
state of initial stress in the soil before application
of the load. It was shown by the present author?
that this influence is greater for materials of low
elastic modulus. Both refinements will be left out
of the present theory in order to avoid undue
heaviness of presentation.

The first and second sections deal mainly with
the mathematical formulation of the physical
properties of the soil and the number of constants
necessary to describe these properties. The
number of these constants including Darcy's
permeability coefficient is found equal to five in
the most general case. Section 3 gives a dis-

cussion of the physical interpretation of these

various constants. In Sections 4 and 5 are
established the fundamental equations for the
consolidation and an application is made to the
one-dimensional problem corresponding to a
standard soil test. Section 6 gives the simplified
theory for the case most important in practice of
a soil completely saturated with water. The
equations for this case coincide with those of the
previous publication.? In the last section is
shown how the mathematical tool known as the
operational calculus can be applied most con-
veniently for the calculation of the settlement
without having to calculate any stress or water
pressure distribution inside the soil. This method
of attack constitutes a major simplification and
proves to be of high value in the solution of the
more complex two- and three-dimensional prob-
lems. In the present paper applications are
restricted to one-dimensional examples. A series
of applications to practical cases of two-dimen-
sional consolidation will be the object of subse-
quent papers. )

1. SoiL STREsSES

Consider a small cubic element of the con-
solidating soil, its sides being parallel with the
coordinate axes. This element is taken to be large
enough compared to the size of the pores so that
it may be treated as homogeneous, and at the

3 M. A. Biot, “Nonlinear theory of elasticity and the
linearized case for a body under initial stress.”
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same time small enough, compared to the scale of
the macroscopic phenomena in which we are
interested, so that it may be considered as
infinitesimal in the mathematical treatment.

The average stress condition in the soil is then
represented by forces distributed uniformly on
the faces of this cubic element. The corresponding
stress components are denoted by

o (1.1)

Ts Oy Tx
Ty Tz O

They must satisfy the well-known equilibrium
conditions of a stress field.

do: dr, d7y
—=0,
dx 08y 9z
or, doy, Odr1.
-— =0, (1.2)
dx dy oz
dr, dr. Oda,
—_— =0.
dx dy 0z

Physically we may think of these stresses as
composed of two parts; one which is caused by
the hydrostatic pressure of the water filling the
pores, the other caused by the average stress in
the skeleton. In this sense the stresses in the soil
are said to be carried partly by the water and
partly by the solid constituent.

2. STRAIN RELATED TO STRESS AND
WATER PRESSURE

We now call our attention to the strain in the
soil. Denoting by u, v, w the components of the
displacement of the soil and assuming the strain
to be small, the values of the strain components
are

u Jw dv
e, =—, Yo=—F—
ox dy o0z
dv du ow
g=—, Y=—+—, (2.1)
dy dz ox
Jw dv Jdu
€=, =
oz . 0x 9y

In order to describe completely the macroscopic
condition of the soil we must consider an addi-
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tional variable giving the amount of water in the
pores. We therefore denote by 6 the increment of
water volume per uit volume of soil and call this
quantity the variation in water conient. The
increment of water pressure will be denoted by a.

Let us consider a cubic element of soil. The
water pressure in the pores may be considered as
uniform throughout, provided either the size of
the element is small enough or, if this is not the
case, provided the changes occur at sufficiently
slow rate to render the pressure differences
negligible.

It is clear that if we assume the changes in the
soil to occur by reversible processes the macro-
scopic condition of the soil must be a definite
function of the stresses and the water pressure
i.e., the seven variables

e: € € Y= Yy Vs 0
must be definite functions of the variables:
Cr Oy U0 Ty Ty Ts O.

Furthermore if we assume the strains and the
variations in water content to be small quantities,
the relation between these two sets of variables
may be taken as linear in first approximation.
We first consider these functional relations for
the particular case where ¢=0. The’ six com-
ponents of strain are then functions only of the six
stress components ¢; oy 05 7z Ty T;. Assuming the
soil to have isotropic properties these relations
must reduce to the well-known expressions of
Hooke’s law for an isotropic elastic body in the
theory of elasticity ; we have

Oz

14
et:E——E_(a”_*— o),

g, Vv

BV=E—E(G.+6=),
[/ 14
¢z=E—E(6z+6y), (2.2)
v:=1:/G,
7y=7/G,
v:=7:/G.

In these relations the constants E, G, » may be
interpreted, respectively, as Young’s modulus,
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the shear modulus and Poisson’s ratio for the
solid skeleton. There are only two distinct
constants because of the relation

E

Ce—— . 2.3
2(1+») @3)

Suppose now that the effect of the water pressure
o is introduced. First it cannot produce any
shearing strain by reason of the assumed isotropy
of the soil; second for the same reason its effect
must be the same on all three components of
strain e, e, ¢,. Hence taking into account the
influence of ¢ relations (2.2) become

(-3

14 o
ez=—'—_(0'y+ dz) +-v
E E 3H

gy, ¥ a
8y=—_—(az+az)+—y (2'4)
E E 3H
c; Vv o
es='_——(¢7:+dy)+_'y
E E 3H
v:=1:/G,
7v="14/G,
‘Y;=T./G,

where H is an additional physical constant.
These relations express the six strain components
of the soil as a function of the stresses in the soil
and the pressure of the water in the pores. We
still have to consider the dependence of the

increment of water content 6 on these same

variables. The most general relation is

6=aio.+ a0, +as0,+ a7z :
+05Ty+as1',+a7a.

Now because of the isotropy of the material a
change in sign of 7. 7, 7, cannot affect the water
content, therefore a,=a,=as=0 and the effect
of the shear stress components on 6 vanishes.
Furthermore all three directions x, ¥, 2 must have
equivalent properties a;=ay=as. Therefore rela-
tion (2.5) may be written in the form

(2.5)

1 o .
0=—(o.t0,+0.)+—, 2.6
3H1(c +oy+o )+R (2.6)

where H; and R are two physical constants.

157

Vs ———



Relations (2.4) and (2.6) contain five distinct
physical constants. We are now going to prove
that this number may be reduced to four; in
fact that H=H, if we introduce the assumption
of the existence of a potential energy of the soil.
This assumption means that if the changes occur
at an infinitely slow rate, the work done to bring
the soil from the initial condition to its final state
of strain and water content, is independent of the
way by which the final state is reached and is a
definite function of the six strain components and
the water content. This assumption follows quite
naturally from that of reversibility introduced
above, since the absence of a potential energy
would then imply that an indefinite amount of
energy could be drawn out of the soil by loading
and unloading along a closed cycle.

The potential energy of the soil per unit volume
is
U=%(°’zez+ayey+‘7:ez+737z

Yyt Tevetob).

In order to prove that H=H, let us consider a
particular condition of stress such that

(2.7)

gi=0,=0,=0},

r,=1y=7,=0,
Then the potential energy becomes
U=3(o1e+08) with e=e.+e,+e,
and Eqs. (2.4) and (2.6.)

3(1—=2%) o
€=—E—0'1+E, 0=0']/H1+0'/R. (2.8)

The quantity e represents the volume increase of
the soil per unit initial volume. Solving for ¢;
and o

€ [/
o=———"
RA HA
—e 3(1—-2))8
o= +— (2.9)
H,A EA
3(1—-25) 1
A= T
ER HH,

The potential energy in this case may be con-
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sidered as a function of the two variables ¢, 6.
Now we must have

AU oU
—=g -—=g.
de a0
Hence
60’1 do
30 e
or
1 1
HA HA

We have thus proved that H=H, and we may
write

1
o=§{(o,+a,+a.)+—;. (2.10)

Relations (2.4) and (2.10) are the fundamental
relations describing completely in first approxi-
mation the properties of the soil, for strain and
water content, under equilibrium conditions.
They contain four distinct physical constants
G, v, H and R. For further use it is convenient to
express the stresses as functions of the strain and
the water pressure o. Solving Eq. (2.4) with
respect to the stresses we find

ve
a,=2G(e,+ )—-cw,
1—2v
ve
a,=20(e,,+ )—aa,
1—-2»
ve.
0',=2G(e,+ )—aa, (2.11)
1—-2v
7:=GYs,
Ty=G'vi
7.=Gv,
with
2(14») G
o=
31-2v») H

In the same way we may express the variation in
water content as

6=aet+0a/Q, (2.12)
where

1 1 o

0 R H
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3. PuysicAL INTERPRETATION OF THE
SoiL CONSTANTS

The constants E, G and » have the same
meaning as Young’s modulus the shear modulus
and the Poisson ratio in the theory of elasticity
provided time has been allowed for the excess
water to squeeze out. These quantities may be
considered as the average elastic constants of the
solid skeleton. There are only two distinct such
constants since they must satisfy relation (2.3).
Assume, for example, that a column of soil sup-
ports an axial load po= —o, while allowed to

expand freely laterally. If the load has been’

applied long enough so that a final state of
settlement is reached, i.e., all the excess water has
been squeezed out and ¢ =0 then the axial strain
is, according to (2.4),

Po
e, = —— (3.1)
E
and the lateral strain
Vpo
e,=e,,=——E-—=—ve,. (3.2)

The coefficient » measures the ratio of the lateral
bulging to the vertical strain under final equi-
librium conditions.

To interpret the constants H and R consider a
sample of soil enclosed in a thin rubber bag so
that the stresses applied to the soil be zero. Let
us drain the water from this soil through a thin
tube passing through the walls of the bag. If a
negative pressure —¢ is applied to the tube a
certain amount of water will be sucked out. This
amount is given by (2.10)

R

The corresponding volume change of the soil is
given by (2.4)
o

€= ——.

3.4
H (3.4)

The coefficient 1/H is a measure of the com-
pressibility of the soil for a change in water
pressure, while 1/R measures the change in
water content for a given change in water pres-
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sure. The two elastic constants and the constants
H and R are the four distinct constants which
under our assumption define completely the
physical proportions of an isotropic soil in the
equilibrium conditions.

Other constants have been derived from these
four. For instance « is a coefficient defined as

2(14») G

—_— 3.5
* 3(1—-2») H (3:5)

According to (2.12) it measures the ratio of the
water volume squeezed out to the volume change
of the soil if the latter is compressed while
allowing the water to escape (¢=0). The coefh-
cient 1/Q defined as

(3.6)

is a measure of the amount of water which can be
forced into the soil under pressure while the
volume of the soil is kept constant. It is quite
obvious that the constants e and Q will be of
significance for a soil not completely saturated
with water and containing air bubbles. In that
case the constants a and Q can take values
depending on the degree of saturation of the soil.

The standard soil test suggests the derivation
of additional constants. A column of soil supports
a load po= —o.and is confined laterally in a rigid
sheath so that no lateral expansion can occur.
The water is allowed to escape for instance by
applying the load through a porous slab. When
all the excess water has been squeezed out the
axial strain is given by relations (2.11) in which
we put o =0. We write

e.= — Pa. (3.7)

The coefficient i
- 1-2y

g=—" (3.8)
- 2G(1—v)

will be called the final compressibility.

If we measure the axial strain just after the
load has been applied so that the water has not
had time to flow out, we must put §=0 in
relation (2.12). We deduce the value of the water
pressure
(3.9)

o= —aQe,.
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substituting this value in (2.11) we write

) ;= —poa;. (3.10)
The coefficient
a
ai=——- (3.11)
- 14-a%aQ

will be called the instantancous compressibility.
The physical constants considered above refer
to the properties of the soil for the state of
equilibrium when the water pressure is uniform
throughout. We shall see hereafter that in order
to study the transient state we must add to the

four distinct constants above the so-called -

coefficient of permeability of the soil.

4. GENERAL EQUATIONS GOVERNING
CONSOLIDATION

We now proceed to establish the differential
equations for the transient phenomenon of con-
solidation, i.e., those equations governing the dis-
tribution of stress, water content, and settlement
as a function of time in a soil under given loads.

Substituting expression (2.11) for the stresses
into the equilibrium conditions (1.2) we find

de do

GViu+ ——a—=0,
1—2y0x 9dx
de do

GV%-{—I 2 —-———aa—=0,
—2v 9y y

(4.1)

de do

GV ——a—=0,
1—-2v 0z 0z

VI=92/dx2432/dy2+a%/dz2.

There are three equations with four unknowns
%, 9, w, o. In order to have a complete system we
need one more equation. This is done by intro-
ducing Darcy’s law governing the flow of water
in a porous medium. We consider again an
elementary cube of soil and call V, the volume of
water flowing per second and unit area through
the face of this cube perpendicular to the x axis.
In the same way we define V, and V.. According
to Darcy’s law these three components of the
rate of flow are related to the water pressure by
the relations
do do Oc
Vi=—k—, V,=—k—, Vi=—k—

4.2)
dox dy 0z

The physical constant £ is called the coefficient of
permeability of the soil. On the other hand, if we
assume the water to be incompressible the rate of
water content of an element of soil must be equal
to the volume of water entering per second
through the surface of the element, hence

oV, av,
& ox ay adz

(4.3)

1
Combining Eqs. (2/{_2) (4.2) and (4.3) we obtain

de 1 d¢
EVio=q—+——. (4.4)
ot Q. ot
The four differential Eqgs. (4.1) and (4.4) are the
basic equations satisfied by the four unknowns
U, 9, W, 0.

5. APPLICATION TO A STANDARD SoiL TEsT

Let us examine the particular case of a column of soil supporting a load pe= —o, and confined
laterally in a rigid sheath so that no lateral expansion can occur. It is assumed also that no water can
escape laterally or through the bottom while it is free to escape at the upper surface by applying the

load through a very porous slab.

Take the z axis positive downward; the only component of displacement in this case will be w.
Both w and the water pressure ¢ will depend only on the coordinate z and the time ¢. The differential

Eqgs. (4.1) and (4.4) become a
. 197w ow”
- ——a—=0, (5.1)
a 9z? dz
9% Jw 1 de¢ - -
b= a— = —, (5.2)
322 dzdt Q ot
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where a is the final compressibility definel by (3.8). The stress o, throughout the loaded column is a

constant. From (2.11) we have 7
- - - ) 13w .
po=—0y=———=Fac (5.3)
a 9z

and from (2.12)
Note that Eq. (5.3) implies (5.1) and that
1

This relation carried into (5.2) gives

—_———— (5.4)

with
—=at—. 5.5
c ak Qk G-3)

The constant ¢ is called the consolidation constant. Equation (5.4) shows the important result that the

water pressure satisfies the well-known equation of heat conduction. This equation along with the

boundary and the initial conditions leads to a complete solution of the problem of consolidation.
Taking the height of the soil column to be % and z=0 at the top we have the boundary conditions

o=0 forz=0,
do ' 5.6
—=0 forz=h. (5.6)
dz

The first condition expresses that the pressure of the water under the load is zero because the perme-
ability of the slab through which the load is applied is assumed to be large with respect to that of the
soil. The second condition expresses that no water escapes through the bottom.
The initial condition is that the change of water content is zero when the load is applied because the
water must escape with a finite velocity. Hence from (2.12)
ow o

=a—-+—=0 forit=0.
02

Carrying this into (5.3) we derive the initial value of the water pressure

1 a—a; :
tr=po/(—-—-+a) for t=0 or o= o (5.7)
aaQ :

ad

where a; and a are the instantaneous and final compressibility coefficients defined by (3.8) and (3.11).
The solution of the differential equation (5.4) with the boundary conditions (5.6) and the initial
condition (5.7) may be written in the form of a series

4a—a; [ [ (w)’ ] . 1rz+1 [ (31r)2 ] . 31rz+ } (5.8)
=———poiexp| —{ —) ct{sin —T—exp| —{\ T~ ctisin—--°t. .
" e TP LT\ 23 L\ 2h
The settlement may be found from relation (5.3). We have
dw .
"‘—=aﬂ0'—apo. (59)
0z

VOLUME 12, FEBRUARY, 1941 161



The total settlement is a

Vw8 hpo S —— { -(2"+1)TT }+ h (5.10
= =——(a—a; _ | : .
o . oz (@ adhte s Qnt1)r P l 2% .C otpo )

Immediately after loading (¢=0), the deflection is

8 w 1
= = — - ih I e——— h .
w .,rz(a o)k ? (2n+1)z+a p

Taking into account that
w 1 w2

2 ————=—, wi=ashp,, (5.11)
v (2n+1)? 8 ’
which checks with the result (3.10) above. The final deflection for t= o is
Weo=ahpy. (5.12)

It is of interest to find a simplified expression for the law of settlement in the period of time immedi-
ately after loading. To do this we first eliminate the initial deflection w; by considering

8 ® 1 2n+1)7\ 2
'w,=wo—w,-=7—r;(a——a.~)hpoZo‘,m{l—exp[—(—T) Cl]}. (5.13)

This expresses that part of the deflection which is caused by consolidation. We then consider the
rate of settlement.

(5.14)

dw, 2c(a—a;) = (2n4+1)7r72
=————p¢ > exp { —[*——] ct).
at h )

For t=0 this series does not converge; which means that at the first instant of loading the rate of
settlement is infinite. Hence the curve representing the settlement w, as a function of time starts
with a vertical slope and tends asymptotically toward the value (a—a)hp, as shown in Fig. 1 (curve
1). It is obvious that during the initial period of settlement the height % of the column cannot have
any influence on the phenomenon because the water pressure at the depth z=4% has not yet had time
to change. Therefore in order to find the nature of the settlement curve in the vicinity of t=0 it is
enough to consider the case where k= «. In this case we put

n/k=%t 1/h=At
and write (5.14) as
dw,

—=2(a~a)py T exp [—x*(¢+3A8) % ]At
[\]

for k= «. The rate of settlement becomes the integral

dw, w  cla—adpo ’
—=20(a—a‘~)pof -exp (—rtit)df=—-— (5.15)
dt ) (""Ct)i
The value of the settlement is obtained by integration
tdw, ct\?}
w,= ——dt=2(a—a.~)po(-——) . (5.16)
0 dt T -

It follows a parabolic curve as a function of time (cﬁrve 2in Fig. 1).
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6. SIMPLIFIED THEORY FOR A SATURATED CLAY

For a completely saturated clay the standard
test shows that the initial compressibility a; may
be taken equal to zero compared to the final
compressibility a, and that the volume change of
the soil is equal to the amount of water squeezed
out. According to (2.12) and (3.11) this implies

Q=, (6.1)

This reduces the number of physical constants of
the soil to the two elastic constants and the
permeability. From relations (3.5) and (3.6) we
deduce

a=1.

_2G(1+v)
B 3(1—2v)

(6.2)

and from (5.5) the value of the consolidation
constant takes the simple form

c=k/a.
Relation (2.12) becomes
f=c¢ (6.4)
The general differential equations (4.1) and

(4.4) are simplified,

GViu+ _———=0,
1—2vdx ox
G Je Odo
GV + ———=0, (6.5)
1—-2v9y dy
G 0de dc
GVw+- —_———=0,
1—2v 9z 0z
Jde
EVg?=—, (6.6)
ot

By adding the derivatives with respect to x, y, 2
of Egs. (6.5), respectively, we find

Ve=aVe?, (6.7)
where a is the final compressibility given by (3.8).
From (6.6) and (6.7) we derive

. 1 3¢
Ve?=~—.
c ot

(6.8)

Hence the volume change of the soil satisfies the
equation of heat _conduction.

VOLUME 12, FEBRUARY, 1941

(6.3)

Equations (6.5) and (6.8) are the fundamental
equations governing the consolidation of a com-
pletely saturated clay. Because of (6.4) the initial
condition §=0 becomes ¢=0, i.e., at the instant
of loading no volume change of the soil occurs.
This condition introduced in Eq. (6.7) shows that
at the instant of loading the water pressure in the
pores also satisfies Laplace’s equation.

Vo?=0. (6.9)

The settlement for the standard test of a column
of clay of height & under the load o is given by
(5.13) by putting a;=0.

8 w 1
wy=—ahpy Y. ————
2T (ant1)r

X‘l—exp [—((—21;}221)2“] .

From (5.16) the settlement for an infinitely high

column is
A
w,=2apo(—) .
T

It is easy to imagine a mechanical model having
the properties implied in these equations. Con-
sider a system made of a great number of small
rigid particles held together by tiny helical
springs. Thissystem will be elastically deformable
and will possess average elastic constants. If we
fill completely with water the voids between the

(6.10)

(6.11)

(a-a 4')5 o

— ¢

Fic. 1. Settlement caused by consolidation asa { unction
of time. Curve 1 represents the settlement of a column of
height 2 under a load po. Curve 2 represents the settlement
for an infinitely high column.

163



particles, we shall have a model of a completely
saturated clay.

Obviously such a system is incompressible if no
water is allowed to be squeezed out (this corre-
sponds to the condition Q= ») and the change
of volume is equal to the volume of water
squeezed out (this corresponds to the condition
a=1). If the systems contained air bubbles this
would not be the case and we would have to

consider the general case where Q is finite and

a®l.

Whether this model represents schematically
the actual constitution of soils is uncertain. It is
quite possible, however, that the soil particles are
held together by capillary forces which behave in
pretty much the same way as the springs of the
model. '

7. OPERATIONAL CALCULUS APPLIED TO
CONSOLIDATION

The calculation of settlement under a suddenly
applied load leads naturally to the application of
operational methods, developed by Heaviside for
the analysis of transients in electric circuits. As
an illustration of the power and simplicity
introduced by the operational calculus in the
treatment of consolidation problem we shall
derive by this procedure the settlement of a
completely saturated clay column already calcu-
lated in the previous section. In subsequent
articles the operational method will be used
extensively for the solution of various consolida-
tion problems. We consider the case of a clay
column infinitely high and take as before the top
to be the origin of the vertical coordinate z. For a
completely saturated clay a=1, Q= » and with
the operational notations, replacing 4/é¢ by p,

164

Egs. (5.1) become

190%w do 0% dw .
——=—, k—=p— (7.1)
a 9z 9z adz? dz

A solution of these equations which vanishes at
infinity is
w= Clc“l(ﬂlc)"

1 t
o= Cz——(g) Cle-t(plc)’.
a\c

The boundary conditions are for =0
1 dw

o;=—1=—— g=0.

a 9z

c\}
C1=a(-—) ’ Cz=1.
?

The settlement w, at the top (z= 0) caused by the
sudden application of a unit load is

w.=a(§)*- 1(?)-

The meaning of this symbolic expression is
derived from the operational equation¢

1%1(:) =2(t;) ’.

The settlement as a function of time under the
load p is therefore

ct\?
'w.=2(1po(—) .
T

This coincides with the value (6.11) above.

(7.2)

Hence

(7.3)

(7.4)

4V. Bush, Operational Circuit Analysis (John Wiley,
New York, 1929), p. 192.
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