ENVSE 408 - CONTAMINANT HYDROLOGY Syllabus

	Location: 12 Playlist: htt Resource page: htt Text: Co 3 rd ISI Sei Instructors: De Xin Prerequisites: Ge Grading:	Th 1:35-2:50p (Blended course: both in-class and online)1 Earth and Engineering Sciences Buildingp://www.youtube.com/playlist?list=PLBMBy58d_Pxq0yNG7zCyalzfYtOzdp://www.ems.psu.edu/~elsworth/courses/geoee408/cm/ntaminant Hydrogeology, by C.W. Fetter, T. Boving, D. KreamerEdition, Waveland Press Inc., 645 pp., 2018.3N 978-1-4786-3279-5ected texts on reserve in EMS Library.rek Elsworth 231 Hoslerelsworth@psu.eduaxin HE213A Hoslerxkh5114@psu.eduosc. 452; or consent of instructorAssignments (~8 ~equally weighted)35%Content quizzes (~18 or attendance)15%Remediation quizzes (~6 as attendance) <u>6%</u>	<u>GCjRo</u>
		Total ~106%	
	Торіс	Sub-Topic	Reading ¹
1	Introduction	Overview of problems; scientific problems; economic perspective.	Fetter Chap. 1
2	Physical Hydrology	Review; Fracture hydrology; equivalent porous media concepts (EPM); representative elemental volume (REV). Partially saturated flow; capillary models; entry pressures; multiphase flow; relative permeabilities; immiscible penetration. Buckley-Leverett equations; Non-aqueous fluid penetration; NAPL and DNAPL penetration; Product recovery. Brooks-Corey and van Genuchten relations.	Fetter Chaps. 4 & 5; Bear Chap. 9
3	Contaminant Hydrology	Mass transport and attenuation mechanisms; Advection, diffusion, dispersion, adsorption, precipitation, biological attenuation, colloidal transport. Fractured media; solutions for 1-D and 2-D systems; density controlled transport.	Fetter 2 & 3
4	Retardation & Attenuation	Quantifying retardation and attenuation effects: Partitioning, dissolution, persistence. Equilibrium surface reactions; isotherms. Organic compounds, sorption, <i>Koc</i> and <i>Kow</i> ; multiple solute effects; dissolution rates. Half-lives and biodegradation.	Fetter 6 & 7
5	Vapor Mobility	Volatilization and Partitioning: Henry's and Raoult's Laws; Transport mechanisms; partitioning behavior; retardation factors; Differential retardation; dissolved plume advection and gas-phase advection.	Cohen and Mercer
6	Mathematical Models	Finite element models for flow and transport. Steady and transient behavior. Initial conditions and boundary conditions. Numerical stability. Problem solving.	Anderson & Woessner
7	Aquifer & Aquiclude Characterization	Geostatistical methods; Drilling, well & piezometer installation; Cone penetrometer testing; sampling; borehole and surface geophysical methods; magnetic, electric, seismic, gravity; vapor sampling; pump testing; natural geochemical techniques; water quality data; tracer testing, RTD and exotic methods.	Fetter 8
8	Remediation	Point source LNAPL/DNAPL contamination; vapor contamination. Groundwater Remediation: Biological processes; electrolyte processes; containment and ground modification; soil washing; air stripping; thermal processes.	Fetter 9; Grubb and Sitar

References¹:

- 1. Anderson, M.P. and Woessner, W.W., Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press Inc, 1992.
- 2. J. Bear, Dynamics of Fluids in Porous Media, Chapter 9, pp. 439 478, Dover Publishing Co., 1988.
- 3. Cohen, R.M. and Mercer, J.W. DNAPL Site Investigation, Report to EPA, EPA/600/R-93/022, 1993. http://tinyurl.com/DNAPLsiteevaluation
- 4. Fetter, C.W., Boving, T., Kreamer, D. Contaminant Hydrogeology, Macmillan College Publishing Co., 2018.
- 5. Grubb, D.G. and Sitar, N. Evaluation of Technologies for in-situ Cleanup of DNAPL Contaminated Sites, Report to EPA, EPA/600/R-94/120, 1994. <u>http://tinyurl.com/EvalCleanupDNAPLFullReport</u>

Penn State's policy on academic integrity applies to all aspects of course deliverables. Students are encouraged to work together on all assignments but must submit independent work for all graded deliverables and exams. Further details are available for academic integrity and code of conduct at:

https://www.ems.psu.edu/undergraduate/academic-advising/policies-procedures-and-forms/academic-integrity-undergraduates

Per AD 42-27 class attendance for this course is encouraged. "A student should attend every class for which the student is scheduled and should be held responsible for all work covered in the courses taken." Absences/late deliverables should be appropriately corroborated (e.g. doctor's note, etc.).

This syllabus may be updated during the semester and you will be responsible for abiding with any such changes.

Additional generic Penn State policies: https://www.ems.psu.edu/~elsworth/courses/eme_303/outline_add.docx

Deliverables: Students will work in teams to complete one team project - a critical evaluation of one of six remediation methods to be presented in class by the team (one period each). Late assignments lose 10%/day.

Grade Divisions: A (>93.3%); A- (>90.0%), B+ (>86.6%); B (>83.3%); B- (>80.0%), C+ (>75.0%); C (>70.0%), D (>60.0%); F (<60.0%)

Spring 2023 Calendar - At-a-Glance [In-class and Online]

January 2023				
Su Mo Tu We Th Fr Sa	Wk	Deliv	Tuesday	Thursday
7 8 9 10 11 12 13	1	I-c	1:1 Introduction	2:1 Capillary Behavior
14 15 16 17 18 19 20	2	I-c	2:2 Capillary Behavior	2:3 Multiphase Flow
21 22 23 24 25 26 27	3	I-c	2:4 Multiphase Flow	2:5 Multiphase Flow
28 29 30 31				
T ala a 0000				
February 2023				
Su Mo Tu We Th Fr Sa		-		
1 2 3	4	I-c	2:6 Multiphase Flow	2:7 Unsaturated Flow+Transp
4 5 6 7 8 9 10	5	I-c	3:1 Conservative Transp.	-
11 12 13 14 15 16 17	6	I-C	-	4:1 N-C Transp. (organics)
18 19 20 21 22 23 24	7	I-c	4:2 Non-Conservative Transp.	5:1 Vadose Zone
25 26 27 28 29				
March 2023				
Su Mo Tu We Th Fr Sa				
25 26 27 28 29 1 2	8	T-c	6:1 Modeling	7:1 Drilling
345679910	0	- 0	0.1 110401111g	,
10 11 12 13 15 16	9	T-c	Free	Mid-term exam
17 18 19 20 21 22 23	10	0-A	7:2 Sampling & Profiling	7:3 Surface and B/h Geophys
24 25 26 27 28 29 30	11	0-A	8.0 Remediation - J. McNew	Group preparation
April 2023				
Su Mo Tu We Th Fr Sa			Remediation Presentations	
1 3 4 5 6	12	I-c	Presentations due	8.1 Biological Methods
7 8 🦻 10 11 12 13	13	I-c	-)8:3 Containment and Modification (23)
14 15 16 17 18 19 20	14	I-c	8:4 In Situ Soil Washing (23)8:5 In Situ Air Stripping
21 22 23 24 25 26 27	15	I-c	8:6 Thermal Methods	
May 2023				
Su Mo Tu We Th Fr Sa				
28 29 30 1 2 3 4			Mid-term exam	Group presentations due
			✓	

*Class modalities

- I-c In-class or alternatively completed asynchronously online and verified by quiz
- 0-A Online-Asynchronous no In-class meeting/no zoom broadcast but recorded lecture verified by quiz