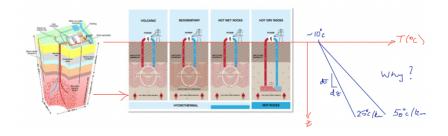
7_2 Exploration and Characterization - Geophysics

Recap:


- 1. Geological setting provides information on global location of resources
- 2. Location specific structure will differ in various environments

Movies: https://www.energy.gov/eere/forge/sandia-national-laboratories-west-flank

Resources: WG7

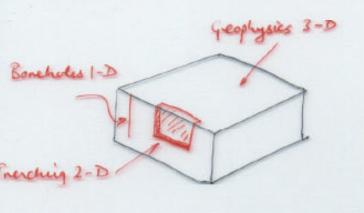
Motivation:

1. Motivation [10%] Provide context for the topic. *Use of relevant public domain videos* are a useful method for this. Why is this particular topic or sub-topic important in the broad view of geothermal energy engineering?

Quality of resource defined by Thermal_power = Mass_rate * c * delta_T Therefore prospect for:

- (i) High Mass_rate/permeability/overpressure define fast flow paths, and
- (ii) High T at shallow depth

Less crucial in "engineered" systems - "EGS" and "GSHP"


Scientific Questions:

- 2. Scientific Questions to be Answered/Outline [10%] What questions arise from the motivation. What are the sub-topical areas that address these scientific questions.
- 1. How do we locally define the reservoir and the distribution of:
 - A. Temperatures as shallow as possible
 - B. Permeable pathways as distributed as possible or high flow rates

GEOPHYSICS

- 1. Geomagnetic methods
- 2. Geoelectric methods DC/AC/EM
- 3. Seismic methods
- 4. Gravity methods
- 5. Borehole methods Well logging

GEOPHYSICAL METHODS OF INVESTIGATION

Investigation Scales

small scale - representativeness of sample

- large scale structures

v. imp for grandwater smile large

scale structure curtools flow/

transport behavior.

- use of pump tests.

large scale -

- by pectine
- cornelation with real behavior through bancholes.

Geophysical Hethods:

fast/ large volume / area coverage - sinespensive

- 1. Geomagnetic methods
- 2. Geoelectric methods
 - 2.1 Direct Coment
 - 2.2 Electromagnetic (Radar)
- 3. Seismil methods
 - 3.1 Refraction
 - 3.2 Reflection
- 4. Gravity methods

Hiscellanous:

well logging.

DIAGRAM OF DELIVERABLES FOR A PHASE II MONITORING WELL DESIGN PROJECT

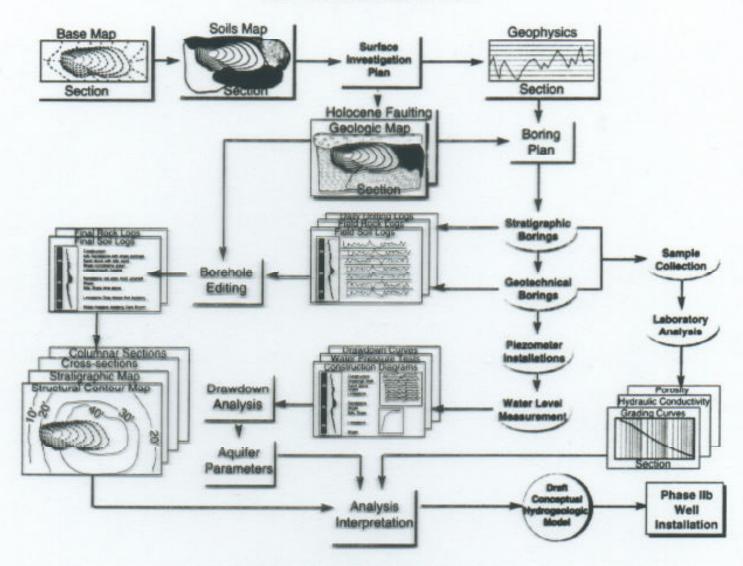


Figure 3-3a Phase II Flow Diagram

CONCEPTS OF SCALE

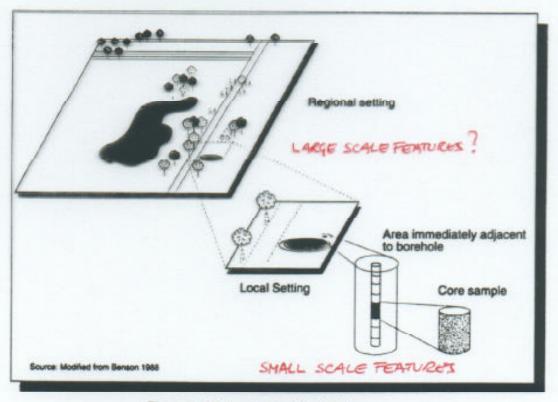
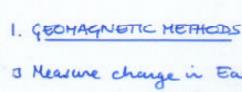



Figure 3-12 Regional to Core Sample Scales

3 Neasure change in Earth's mag. field

.. Locates ferrors targets

- a Response proportional to
 - 1. Mass of target, M.
 - 2. Is separation of target.
- a Susceptibility to urban utilities

i rural areas better

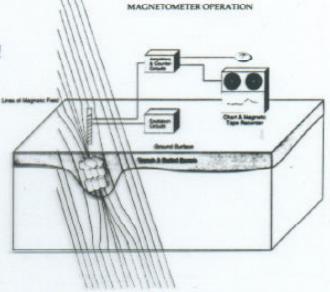


Figure 3-20 Magnetometry

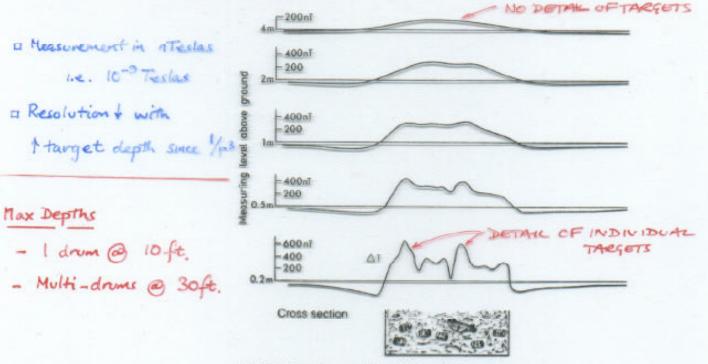


Fig. 2.1. Magnetic anomalies at different heights above ground

Anomoly influenced by inclination of Earth's may, field. (60° in U.S.)

Max to South

Depth = ½L.

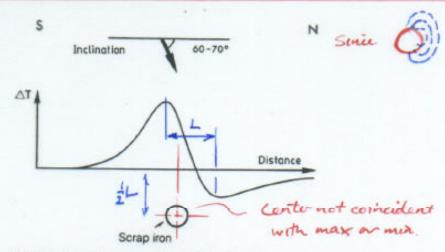


Fig. 2.2. Magnetic section of the total intensity DT over a globe-shaped concentration of scrap iron at 65° latitude

Two types of magnetometers

- 1. Permanent Hagnet Hagnetometers
- { Magnetic field balance Torsiin magnetometo
- Hearines 1 and magnetic components
- Accoracy I at
- Slow but v. accurate

2. Proten Magnetemetes

- Heasures total field, T, a varations, DT.
- Principle: Apply a strong I second direction magnetic field
 - Causes hydrogen protons to spin
 - (changes spin)
 - Shot off magnetic field and
- Fast, but records only man full component 40.
- Accuracy InT

2. GEOELECTRIC HETHODS

HORIZONTAL RESISTIVITY MAPPING AND VERTICAL ELECTRICAL SOUNDING (VES) GEOPHYSICAL SYSTEMS

- a PROFILING
- O SOUNDING
- D ELECTROHAGNETIC (GPR)

Honorolial Results the Profile Date Manager Acres of Honorolian Mapping Representative Season of Honorolian Honorolian Mapping Representative Season of Ho

DC. METHODS

conductivity/resistary

- a Apply D.C. freld.
- a Measure modified

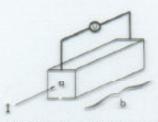

field

Figure 3-27 Resistivity Geophysical Method

Ohm's Law

R= resistance [2]

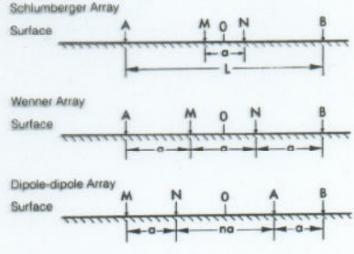
$$R = \frac{b}{2} p$$

- 1 = Current (A)
- U= Potential (V)
- q = Cross section of rectangular parallelepiped
- b = Length of parallelepiped

Fig. 2.3. Current flow through a limited conductor

p = Specific resistantly [2m]

Ps = K (u)


Schlemkeger II [(16)2-(1a)2].

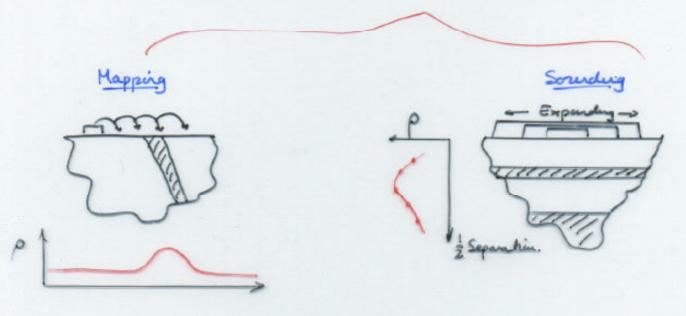
Henre

Dipole-depole

TTa. n(n+1)(n+2)a

2TTa

L = AB = Separation current electrodes


a * MN = Separation potential electrodes

0 - Point of measurement

Fig. 2.5. Arrays for geoelectric mapping and sounding

Cornect the magnetudes to ps:

Hethod depends on resustinly contrast between layers

Mapping

- a Locate in of disposal sites / or drums / or plumes
- a Fixed array separation : locate changes in ps or absolute magnetiste of ps
- sampling depth.

 Werner away commonly used.
- a Require currents is ps

Garbage & 20 Am Granel/sandstone 1000 Am (lays 3-30 Am

Contracto &

SOUNDING

Determine:

- 1. Apparent resistivities of strata
- 2. Theckness and depth of interfaces

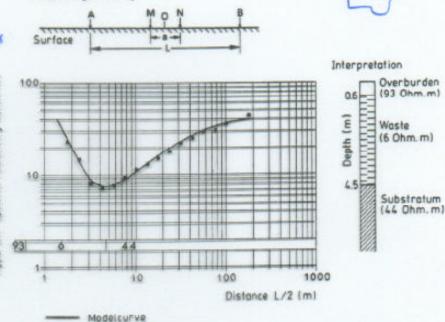


Fig. 2.6. Geoelectric sounding curve (VES) of a Schlumberger array with digital interpretation and computed model curve of the minimum type "H"

Manily Schlunkeger away

- 1. Increase separation logarithmorally
- 2 Plot pe = " with half specing 4/2
- 3. Match with model type covers. or invest remercally.

Problems

1. Omitted beds

Thinlayers or layers marked by very conductive beds

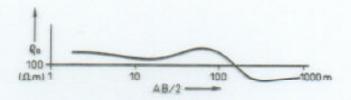
2. Equivalence

Non-unique corner since equivalence of behavior

Table 2.1. Specific resistivities

Measured values

Schlumberger Array


Rock type/Material	Specific resistivity [Ωm]					
Rock type	2 20					
clay, marl, rich	3 - 30					
clay, marl, meagre	10 - 40					
clay, sandy, silt	25 - 150					
sand, with clay	50 - 300					
sand, gravel in ground water	200 - 400					
sand, gravel, dry	800 - 5000					
rubble, dry	1000 - 3000					
limestone, gypsum	500 - 3500					
sandstone	300 - 3000					
salt beds and salt domes	> 10000					
granite	2000 - 10000					
greis	400 - 6000					
Deposited refuse						
domestic garbage	12 - 30					
debris and dumped soil	200 - 350					
industrial mud	40 - 200					
scrap-metal	1 - 12					
pieces of broken glass and porcelain	100 - 550					
castine sand	400 - 1600					
wastepaper (wet)	70 - 180					
contaminated plume of domestic-garbage dump	1 - 10					
used oil	150 - 700					
tar	300 - 1200					
cleaning clothes and materials	30 - 200					
used lacquer and paint	200 - 1000					
barrels (empty)	5 - 20					

Equivalence

- Non-ineque solution
- Match with banchale
 - data
- Effect of saturant may influence results.

Fracture detection methods

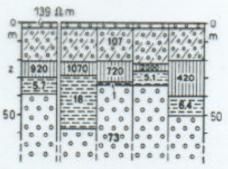


Fig. 2.7. Equivalent digital interpretations of a Schlumberger sounding curve. Left column = mathematically best model. The selection of the most suitable model has to consider neighboring curves and the known geology

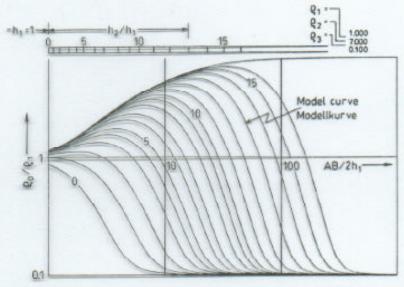
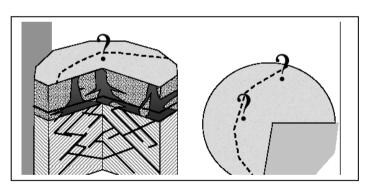


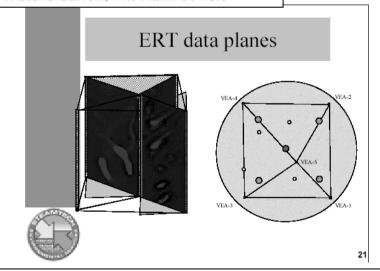
Fig. 2.8. Three-layer master curves in a log-log graph of the INGESO atlas. The resistivities of the three beds are in the ratios 1:7:0.1; first layer; second layer; third layer. The sounding curve, which has been drawn on log-log graph paper in the field, is laid on top of the master curve and moved around until one of the master curves tallies with the field curve. The thickness of the second layer, which has here seven times the pa-value of the first layer (see the resistivity values at the top right) can be found by the number of the curve no.13. On the thickness beam at the top left, which is divided from 0 to 16, the thickness h₂ can be directly determined

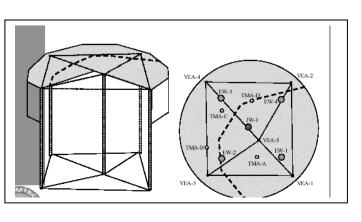
Edwards AFB, CA – Thermal Remediation Monitoring with ERT

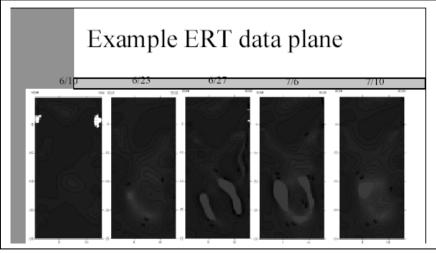
Edwards Air Force Base, Edwards, CA

Contaminants Treated: TCE


Hydrology: Groundwater at 30 feet bgs


Geology: Fractured granite
Starting Contaminant Levels: DNAPL expected


Cleanup Levels Achieved: Project Awarded in 2000


Remediation Time Period: May-June 2002

Client Reference: Scott Palmer, Earth Tech, San Jose CA, (408)-232-2826
Remediation Design Engineers: Dr. Gorm Heron, Dr. Steve Carroll, Mr. Hank Sowers

Magnetotellurics

Measure electrical resistivity from current generated by the Earth's (natural) magnetic field.

e.g. West Flank Coso: https://www.energy.gov/eere/forge/sandia-national-laboratories-west-flank

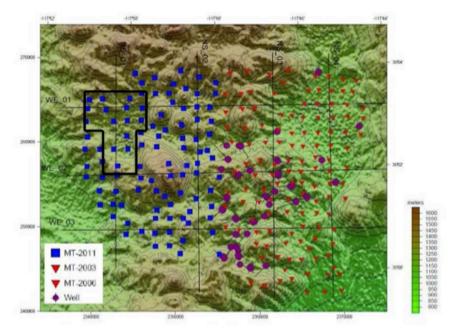


Figure 23. MT survey points throughout the Coso Volcanic Field starting in 2003 through 2011. The West Flank FORGE test area polygon is pictured for reference.

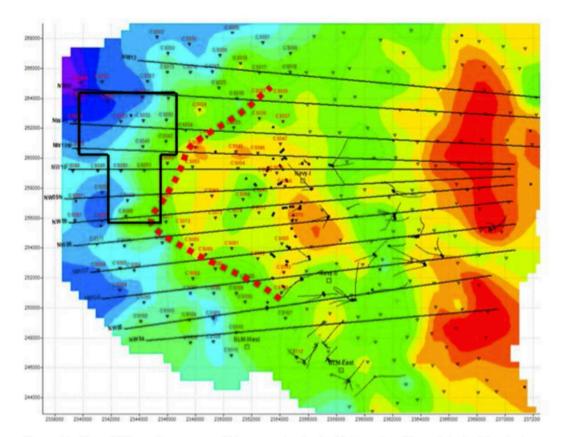


Figure 24. Map of MT conductance at ~600 meters depth of a 1D inversion. The red dashed line is the mapped extent of the hydrothermal system at Coso. The West Flank FORGE test polygon is drawn on top for reference.

INDUCED POLARIZATION (INDUCED POTENTIAL)

11 Apply DC cornect as Decay curve Primary current Wenner or Schlimberger. to Cut current and measure voltage decay with Secondary potential - i-8s. time 15-8x a Reverse connect to erase remnant charge Measured value App spec resistivity pa Chargeability M IP-Pseudosection Effective depth percentury. D D~a(n+1)=

Induced polarization (time domain)

SELF POLARIZATION

Dipole leightin = 1 to 6

a Neasures natural geo-electric field

Fig. 2.9. Principle of induced polarization (IP)

or Results from chemical matter (natural battery) og Redor.

30 mV - 200 mV

· sometimes nesults from rapid fluid from

< 10 mV,

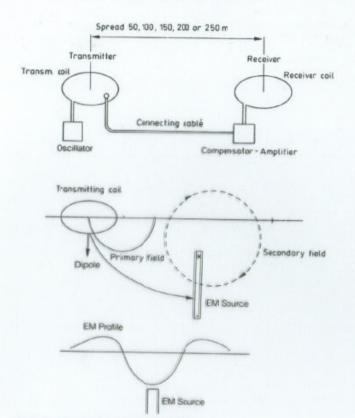
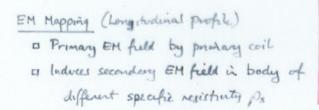
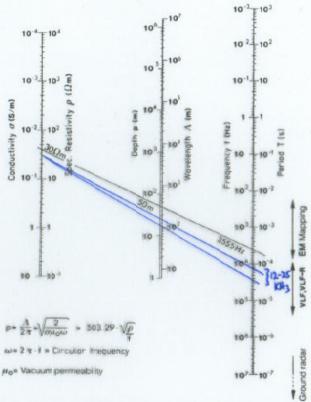




Fig. 2.11. Principle of electromagnetic mapping

a Resolve interpretine ambiguities using multiple frequencies. (perhaps 12)

Fi. 2.12. Nonogram showing the relations of specific resistivity (left column), depth of penetration (middle column) and frequency (right column) of a homogenous plane wave

EN by Distant Transmitter (VLF)

1) Permanent transmitters around globe (12-25kHz)
(Submarine navigation)

13 Measure individe secondary folds & interpret.

a Set frequery: depth of perchateri ~ 15m for Pa < 30 2m.

TIME - DOMAIN ELECTROMAGNETICS (TOM)

decay of EH signal
is measured with time.

5m to 100 m diameter but achoose large depth peretruition

Applied to determine brine peals and salt mater intrusion.

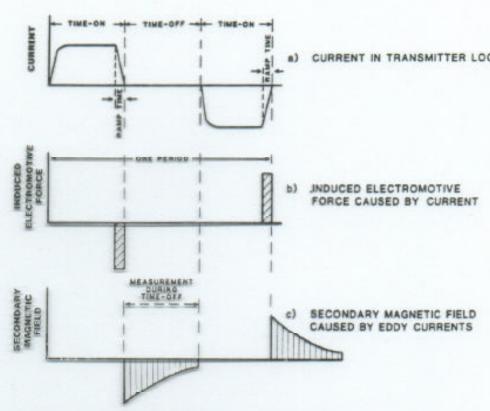


Fig. 2.15. System wave forms employed by the TDEM method

GROUND-PENETRATING RADAR (GPR)

Dielectro Kr Record

Const. Kr Home

Trans. Rec. - locaten

Record

The

Records travel time that must be scaled to a velocity -s depth.

- Shallow depth peretrature for EN waves 8 MHz 49Hz
 Reflection from interfaces with dielectric constant conhast, K
- Dealectric constant, K = Capacitance of material = & (non-dimensional)
 Capacitance of vaccium
- Depth peretration Limited in low conductivity (high resistivity)

 Clays 0.2 m

 Salt, ice, dry quarte > 300 m

 Typically 3-10 m.
- Changing saturates (record infollowing ineal time)

 Type of saturant (wapt or Derter)
- Depth peretratum controlled by frequency

 1 frequency reduce peretratus and increase resolutions
 (see nemogram)

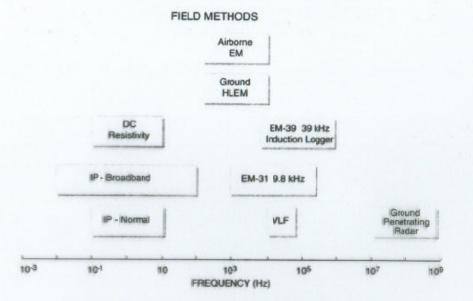


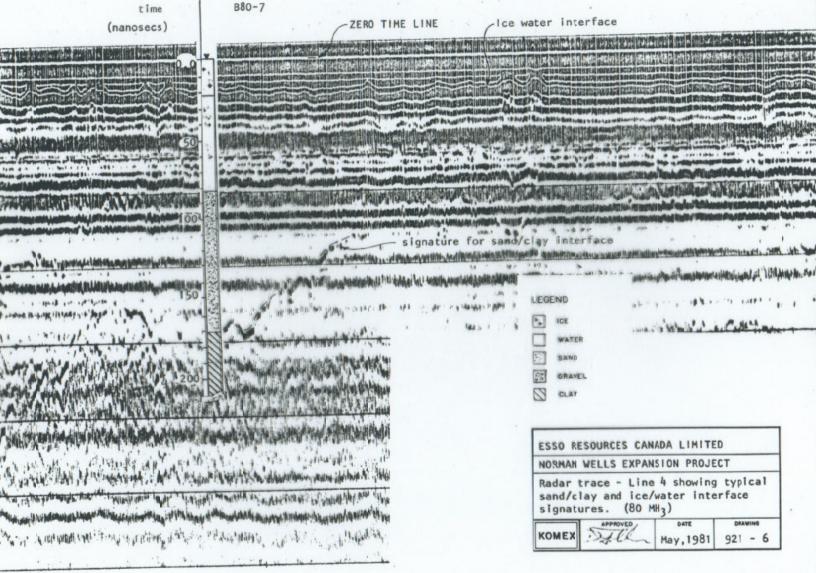
Figure 3-22 Frequencies Used By Electrical Geophysical Methods

Table 2.3. Dielectric constants (K), electric conductivity (σ), electric velocity and attenuation (a) at a frequency of 100 MHz. Davis and Anan (1989)

Material	K	σ(mS/m)	v (m/ns)	a(dB/m)			
Air	1.	0	0,3	0			
Freshwater	80	0.01	0.33	2 - 10 -1			
Seawater	80	3.0 - 110	0.01	0.1			
Dry sand	4	0,01	0.15	0.01			
Wet sand, Aquifer	25	0.1	0,06	0.03			
Limestone	6	0,5 2	0,12	0.04			
Fat clay	5-35	0.05	0.06	1.0-300			
Granite	5	0,1-1	0.13	0,01			
Rock salt	6	0,1-1	0.13	0,01			
Slate	5-15	0.03	0.09	1,0-100			

Depth Time

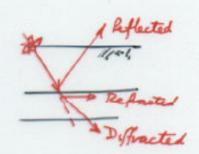
I = Transmitted radar -pulse
R₁, R₂ = Reflected pulses
Fig. 2.17. Principle of ground radar measurements


Amplitude

Transmitter

(S)

Receiver


Velocity of EM name enables calculation of reflector depth.
Dielectric const defines the potential for attenuation

3. SEISHIC HETHODS

- Measures elastic properties of rocks (vs=?)
 evidenced through seconic velocity
- a Locates interfaces between different vs

At interfaces; seismic naves are { Refracted Refracted

Procedure

- 1. Arrange geophones along single be
- 4. Provide initial shock input. Hanner/Deap hanner / Graplavine / Air gum.
- 2. Record first (prinary) and sametimes secondary (shear name) armide

Evalvate { 1. Bed thukness 2. Seismic velocity

Prop.dim.

1. Premary compressural wave (Pware)

2. Shear wave (slower) S-nave.

Swam attenuated by fluid sahvated materials by fluid felled fractures.

Typically:

- . Vs increases with depth (due to 15)
- 2. Weathered surface zones have I Vs
- 3. Two methods of interpretation
 - 3.1 Seismic Refraction
 - 3.2 Sersmic Reflection.

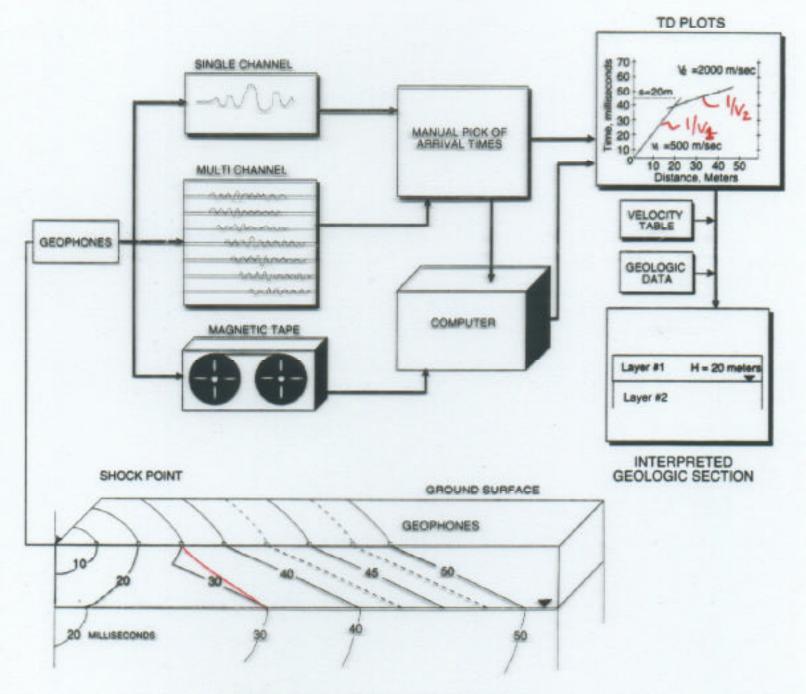
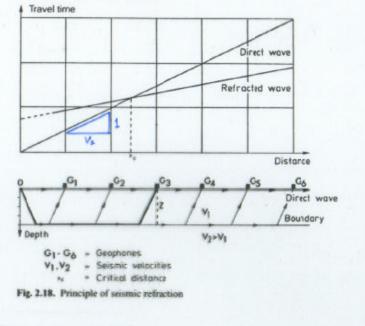



Figure 3-15 Seismic Geophysical Method

3.1 SEISHIC REFRACTION

- 1. Fine shot and plot trine distance graph of first arrivals.
- 2. Evaluate unit relocates of units from slope of curve
- 3. Evaluate layer depths from inflection points

String length defines depth peretration

String length of 5 = desired peretration depth
typical depths of 450m

Seismograms Seismic refraction Surface Registration Geophones Travel time ourve Interpretation 1450 1680 1650 1400 1550 Depth 3600 -3700 1800 4000 4600

Figures = Seismic velocities

Fig. 2.19. Pattern of seismic refraction

Distance

Ambigueties - weathering

Source impulse creates shock funt reflected by interfaces.

Reflection occurs @ interfaces with "seismie impedence = p Vs

Pathectun 2

Pathectun 2

Direct water

dest

Messure armual trove and plot as trove - dictioner.

Advantages over Refraction

1. Increased depth peretration with small string leggter

Desadvartages

Reflected name annues so quickey that sweat was are present and most be fittered out.

To use @ dept L 50m, ned:

- 1 Received with high sampling nate and high frequency source
- @ sophis hiested feltering and data analysis methods.

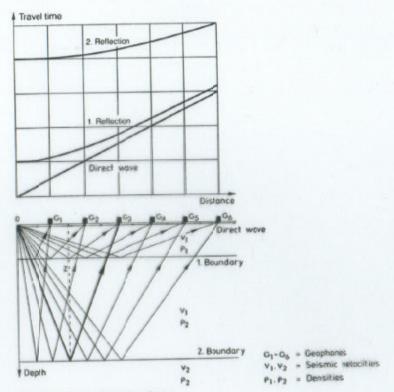


Fig. 2.21. Principle of seismic reflection

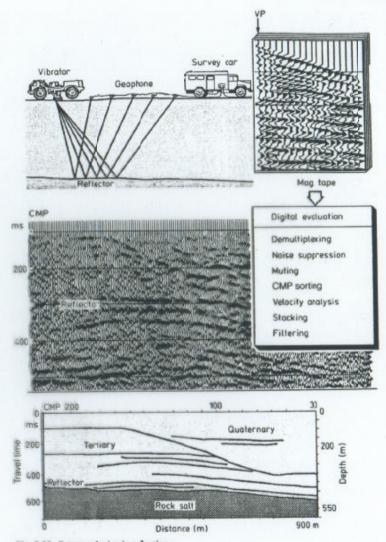
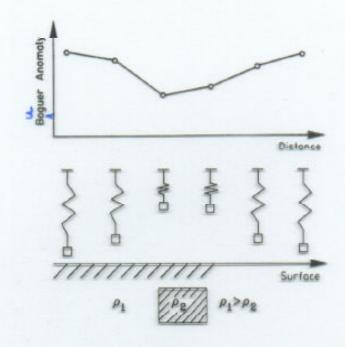



Fig. 2.22. Pattern of seismic reflection

Detects charges in density according to Niewton's Law of gravitational attraction

P1 . P2 : Density

Fig. 2.23. Principle of gravity measurements

9 = grave takanal constant 6.67 x 18 degree cont g = grav. accn.

Grantometers measure variation in g = 9.8 m/s2 of 10 5 m/s2

Gravity depends on :

- 1. Latitude (Non-perfect sphere)
- 2. Elevation (R)

[Free air correction]

3. Topography (mz)

[Terrain correction]

4. Earth tides

[Isoshhi correction]

5. Density variations in subscripace [Bouquer correction]

Density is the only important factor in gravity measurerts, but effect is much less than all other factors

Limited applicability to Environmental Surveys:

- 1. Small signal
- 2. High east.

5. WELL LOGGING

- a Applicable to materials in vicinity of wellbone
- a variety of logging signals available
- = Recorded continuously with depth.

Methods

Gamma Ray - Measures natural gumma indication

- Pick up clay layers to . 3m resolution

Dersity Log - Artificial source "Cs @ proke base and gamma detector @ top

- Advantion of gamma vadration by rock is proportional to dessity (Compton effect)

Newtron Log - Artificial Newtren source

- Measure backscattering to determine moisture content (preserve of Hydroger) - parosity log.

Electric Log - Apparent resistantly in sidenall rocke (Nultiple pt. ange)

- May simultaneously measure self potential

- Records mixed voushvity - connect for mudjuster effects

Salinometer - Resistantly of barehale fluid.

Temperature

Some velocity

Calipir

Flowmeter

Deviation

Table 24. Logging methods, measured parameters and objects of investigation

Symbol	Parameter	Result	Object
GR	count of natural gamma radiation	natural radioacti- vity of rocks	petrography clay content
D	counts of compton scattered rays	density of rocks	fracturing,
N	counts of secondary neutron-neutron rays	lithology	stratigraphy porosity
EL, ES	apparent resisitivity	true resistivity	hydraulies, lithology
ML, MLL	apparent resistivity at borehole wall	true resistivity small scale	lithology, hydraulics
IEL	app. conductivity, focused induction	true conductivity	lithology
FEL, LL	focused electric log	true resistivity of rock	lithology
SP	self-potential (probe- to-surface)	sources of electric	oxidizing bodies
SAL	resistivity of bore- hole fluid	salinity	total salt content of fluid
ГЕМР	temperature of bore- hole fluid	geothermal field	thermal gradient
SONIC	travel time of scis- mic waves	seismic velocity	seismic velocity
CAL	borehole diameter	shape of borehole walls	correction of other logs
LOW	revolutions of a spinner	velocity of fluid flow	zones of in- and outflow of water
OV	compass and dipmeter	inclination + azi- muth of borehole	spatial drill path
PT	video signals, photography	state of borehole walls	direct view of lithology

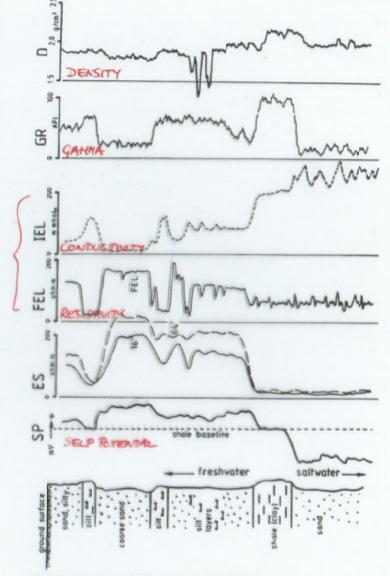


Fig. 2.24. Comparison of different logs with the lithology of cores.

SP = self-potential survey, ES = electrical survey measures resistivity in 16" and 64" point array; FEL = focused electrical log for thin layers; IEL = induction electric log measures electric conductivity; GR = gamma ray measures natural radiation; D = density log by artificial gamma source and detector

Table 2.4. Logging methods, measured parameters and objects of investigation

Symbol Parameter		Result	Object			
GR	count of natural gamma radiation	natural radioacti- vity of rocks	petrography clay content			
D	counts of compton scattered rays	density of rocks	fracturing, perosity			
N	counts of secondary neutron-neutron rays	lithology	stratigraphy perosity			
EL, ES	apparent resisitivity	true resistivity	hydraulics, lithology			
ML, MLL	apparent resistivity at borehole wall	true resistivity small scale	lithology, hydraulics			
IEL	app. conductivity, focused induction	true conductivity	lithology			
FEL, LL	focused electric log	true resistivity of rock	lithology			
SP	self-potential (probe- to-surface)	sources of electric	oxidizing bodies			
SAL	resistivity of bore- hole fluid	salinity	total salt conten			
TEMP	temperature of bore- hole fluid	geothermal field	thormal gradient			
SONIC SV	travel time of seis- mic waves	seismic velocity	seismic velocity			
CAL	borehole diameter	shape of borehole walls	correction of other logs			
FLOW	revolutions of a spinner	velocity of fluid flow	zones of in- and outflow of water			
DV	compass and dipmeter	inclination + azi- muth of borehole	spatial drill path			
OPT	video signals, photography	state of borehole walls	direct view of lithology			

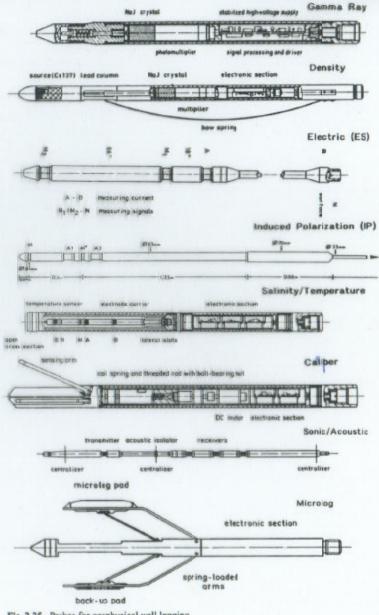


Fig. 2.25. Probes for geophysical well logging

This table is intended as a general guide. The application ratings given are based upon actual experience at a large number of sites. The rating system is based upon the ability of each method to produce results under general field conditions when compared to other methods applied to the same task. One must consider site-specific conditions before recommending an optimum approach.

In some cases a method rated 3 or NA may in fact solve the problem due to unique circumstances. For example, seismic refraction is rated NA for evaluating organic contaminants. However, in some cases where the contaminant flow

is controlled by bedrock, the seismic method may provide an effective evaluation by mapping bedrock depth.

2	1	1	NA	***		
2	1	1	NA	***		
-				NA	NA	
				2013	100	
1	2	2 (Refr.) 1 (Refl.)	NA	NA	NA	
2	1		NA	NA	NA	
4	2	NA	NA	NA	NA	
4	2	NA	NA	NA	NA	
2	22122	NA	NA	NA	NA	
1	2	NA	NA	NA	NA	
1	2	NA	NA	NA	NA	
		1				
3	3	NA	NA	NA	1	
2	3	NA	NA	NA	1	
3	2	NA	NA	NA	2	
3	3	NA.	NA	NA		
3	3	NA.	NA	NA	1	
4		2	MA	NA	NA	
4	2	3	10			
3	2	2	NA			
2	NA			10000		
3	3	NA	2	1	NA	
				110		
10	NA		10			
2	NA	NA	2	2	NA"	
NA	NA	NA	2	10	NA	
			1			
	2	1 2 1 2 3 2 2 NA 3 3	1 2 3 1 2 3 3 2 2 2 NA NA 3 3 NA	1 2 3 NA 1 2 3 1° 3 2 2 NA 2 NA NA 1° 3 3 NA 2	1 2 3 NA NA 10 10 10 10 10 10 10 10 10 10 10 10 10	1 2 3 NA

Source: Benson, 1988

Table 3-3 Applications of Selected Field Investigation Techniques for Waste Disposal Sites

METHODS										
SElow	SElicanic	SONAL	GRANN	MACON	REGIMETIC	ELECTIVITY	RADAS	TIMES	RADIC MAIN REFI CO	BOREHOLE LOGGIM
			0	•	0 .0	0 .0		0	0	•
0					0	0 0		•	•	•
0.00								0	0	
	0		0	•00	• 0		000000	0		0
	•0		00	0	0.	0.00	• 0	0.	•	•
							O O O O O O O O O O	SEISMIC SEIS	O O O O O O O O O O	O

SOURCE: Modified From MultiVIEW Geosenaces Inc.

OFTEN APPLICABLE

O SOMETIMES APPLICABLE