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Energy-Environment-Economy Nexus

. we can see how energy is the key
o solving all of the rest of the problems -
from water to population”
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energy is the core of the environment problem, environment is the

core of the energy problem, and resolving the energy-economy-environment
dilema is the core of the problem of sustainable well-being for industrial
and developing countries alike."

--John Holdren
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Energy & Environment: Complementary Drivers?
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Close-Out Editorial on 2008-2016 US Administration

Observations:

GHG dropped/flat on 4 occasions:
1980s, 1992, 2009 (recessions)
2014 (growth)

Electricity from Gas:
21% 2008
33% 2015

Employment:
~2.2M Energy efficiency jobs
~1.1M Fossil fuel for electricity

GapMinder Linkage:
US Energy use 2.5% less in
2015 vs 2008 but economy
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US Energy Consumption 2015 - Key R&D Strategies
~100 Quads = 100 EJ = 100 tcf CH, (~20% of World)
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[After Pat Dehmer, US DOE, Office of Science, 2009; Sankey Diagram from LLNL]

Fuel Switching

g3.ems.psu.edu 6 derek.elsworth@psu.edu



Global Carbon Cycle
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Climate Change - Equivocal -versus- Unequivocal

CO2 versus historic time - IPCC

Parsing Filter
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FAQ 2.1, Figure 1. Atmospheric concentrations of important long-lived green-
house gases over the last 2,000 years. Increases since about 1750 are attributed i
human activities in the industrial era. Concentration units are parts per million (pp!
or parts per billion (ppb), indicating the number of molecules of the greenhouse ga
per million or billion air molecules, respectively, in an atmospheric sample. (Data
combined and simplified from Chapters 6 and 2 of this report.)
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Science is Parsed through a Legislative Filter
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Science is Parsed through a Legislative Filter
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Administration’s Energy Plan

= Within 10 years save more oil than we currently import
from the Middle East and Venezuela combined.

= Put 1 million plug-in hybrid cars - cars that can get up to
150 miles per gallon - on the road by 2015.

= Generate 10 percent of our electricity from renewable
sources by 2012, and 25 percent by 2025.

* Implement an economy-wide, cap-and-trade program to
reduce greenhouse gas emissions 80% by 2050.

Pat Dehmer, DOE Office of Science, March 2009
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Capacity Needs - Socolow Wedges

The Stabilization Triangle:
Beat doubling or accept tripling
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Values in parentheses are ppm. Note the identity (a fact about
the size of the Earth’s atmosphere): 1 ppm = 2.1 GtC.

[Rationale in: Pacala & Socolow, Scrence, 2004,
www.stabilisation2005.com/day3/Socolow.pdf]



Capacity Needs - Socolow Wedges
Wedges -7
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[Rationale in: Pacala & Socolow, Scrence, 2004,
www.stabilisation2005.com/day3/Socolow.pdf]



Capacity Needs - Stabilization Wedges

Fill the Stabilization Triangle with Seven Wedges

Zero carbon: 800 GW
(~40 tcf/yr)
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[Rationale in: Pacala & Socolow, Science, 2004,
www.stabilisation2005.com/day3/Socolow.pdf]
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Sub-Surface Energy/Engineering Solutions

Low-Carbon Fuel Solutions?
Unconventional Hydrocarbons
* Gas shales
* Coalbed methane
* Methane hydrates
Carbon Management Solutions?
 Carbon Capture and Sequestration
Zero-Carbon Solutions?
* EGS Geothermal - The new landscape
* Nuclear power
* Hydropower/Pumped storage/CAES
« Wind
» Solar PV and thermal



Low-Carbon Fuel Solution? - Gas Shales




Implications for Energy Independence, Energy Security and
for Climate Change?
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- INorth American shale plays
: (as of May 2011)

A

B Current shale plays
Stacked plays
= Shallowest / youngest
—— lntermediate depth / age
e Deepest / cidest
* Mixed shale & chak play
** Mixed shale & imestone play
*** Mixed shale & tight dolostone-
sikstone-sandsione play

| Prospective shale plays

Source: U S, Energy Information Adminisiralion Based on dala from various published studies. Canada and Mexico plays from AR,
Updated: May 9, 2011




Trillion cubic meters

Projected Growth and Opp

ortunities

Natural Gas Utilization
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Microbially-Enhanced CBM (MECBM)

Geographic Distribution
[~100 Tcf recoverable]

Coalbed methane fields, lower 48 states
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Methods of production

Butt Cleat
—_—
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(1) Nutrient Injection Skid:
Nutrients added to water
and injected into well
using gravity

(4) Produced water
| | used to inject nutrient
| L, into wells in other parts
|| of the field
B PT 8 48D

YL

Production through
natural fractures

Figure 1. Coalbed Methane Develop

[ifi
(3) Water and methane (in
place gas + newly generated
gas) produced from well

f

Principal Issues
Environmental Effects
Rate Limits on Production
Dewatering
Desorption - Capacity
Advection - Perm Evolution
Sequestration

(2) Well closed off and
nutrients allowed to
soak for several years

MECBM Scheduling
A E Gas

MECoM Goal

I
l y
1 Water
Dewatering I Maximum ! Decline
Stage I Production | Stage
" ’
Time

[Nuccio, 2000]
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Low-Carbon Fuel Solution? - Methane Hydrates

Types of Gas Hydrate Deposits

Although all factors controlling the type, Solid methane
distribution, and amount of natural hydrate hydrate ice forms
accumulations are poorly understood, in bands and

lenses close to

geologic environment is known to play a
Arctic/Permafrost |the surface

significant role. In particular, gas

hydrate formation is influenced by el
the porosity, permeability and 5 M Jt Drilling

enclosing medium. - AR o
.
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Capacity Needs - Socolow Wedges

Replace Coal Fired Plants with Gas-Fired
Generation

Effort needed by 2054 for 1
wedge:

1600 GW of coal-fired
generating capacity

~80 Tcf/yr Natural gas

COZcoal/COZQQS ratio is ~1.78 for
equivalent thermal energy

Pulrose Gas Power Station, Isle of Man, UK
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Overview of Geological Storage Options | | e— Droduced oil Of gas
1 Depleted oil and gas reservoirs sreseeseevesesee = injoctad CO;

2 Use of CO, in enhanced oil and gas recovery — Stored CO
3 Deep saline formations — (a) offshore (b) onshore 5
4 Use of CO, in enhanced coal bed methane recovery

Courtesy of CO2CRC, http.//www.co2crc.com.au/



Capacity Needs - Socolow Wedges

Power with Carbon Capture and Storage

Effort needed by
2054 for 1 wedge:

Carbon capture and
storage at 800 GW coal

power plants.

~40 Tcf/yr Natural gas

Overview of Geological Storage Options
1 Depleted oil and gas reservoirs ssssssssasesesses  Injocted CO,

2 Use of CO, in enhanced oil and gas recovery EEESEEES Stored CO,
3 Deep saline formations — (a) offshore (b) onshore 2
4 Use of CO, in enhanced coal bed methane recovery

e

[Rationale in: Pacala & Socolow, Science, 2004,
Courtesy of CO2CRC, http://www.co2cre.com.au www‘sfab”isafion2005'com/day3/s°co|°w'pdf]
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Resource

Zero-Carbon Solution? - Enhanced Geothermal Systems

» Hydrothermal (US:10*EJ)

Challenges
* Prospecting (characterization)

« Accessing (drilling)
* Creating reservoir
* Sustaining reservoir

- Environmental issues

borehole

Observation
» Stress-sensitive reservoirs

« TH M C all influence via effective stress

» Effective stresses influence

* Permeability
 Reactive surface area

* Induced seismicity

Understanding T H M C is key:
« Size of relative effects of THMC(B)

« Timing of effects
* Migration within reservoir
« Using them to engineer the reservoir

- EGS (US:107 EJ; 100 GW in 50y)

Make- up-water
reservoir Cooling

Power generation

: &2
Observation §

borehole ¢
]
o
L]

Production

\i’)}_ s;mu‘:‘zbs

TT
b ]
B 5
i g /
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AH’ . /_:;
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Permeability
Reactive surface area

Induced seismicity
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Hydrothermal v Engineered Geothermal Reservoirs

VOLCANIC

HYDROTHERMAL

SEDIMENTARY

MMMMM

HOT WET ROCKS

SedHeat Initiative
http://geothermal.tcu.edu

High-grade EGS Areas
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Total Fractured Volume (from microseismicity), km®

Can EGS ever be Viable?
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Capacity Needs - Socolow Wedges

Retire Coal Fired Plants and Replace with EGS

Effort needed by 2054 for 1
wedge:

800 GW of EGS capacity
~40 Tcf/yr Natural gas

v
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»
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¥
%
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Zero Carbon Solution? - Nuclear Power
Connected Cycles [Ewing, 2007]
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Zero Carbon Solution? - Nuclear Power

Solitaric
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Figure 1: Underground laboratories worldwide. Physics
laboratories (blue) are listed with their depths in meters water
equivalent. Laboratories for resaarch into the long-term
(~million-year) isolation of high-level nuclear waste, shown
in red, are listed with actual depth. The NELSAM laboratory
(black) is for earthquake research.

1 Homestake
Depth, m.w.e.: 4160

2 Soudan
Depth, m.w.e.: 2040

3 WIPP
Depth, m.w.e.: 1580

4 SNOLAB
Depth, m.w.e.: 5990

5 Baksan
Depth, m.w.e.: 4700

6 Gran Sasso
Depth, m.w.e.: 3030

7 Canfranc
Depth, m.w.e.: 2450

8 Fréjus/Modane
Depth, m.w.e.: 4150

9 Boulby
Depth, m.w.e.: 2805

10 Kamioka
Depth, m.w.e.: 2050

11 Mol
Rock Type: Clay
Depth: 220 m

12 Bure
Rock Type: Clay
Depth: 450 m

13 Toumemire
Rock Type: Clay
Depth: 300 m

14 Horonobe
Rock Type: Sedimentary
Depth: 1,000 m

15 Tono (Mizunami)
Rock Type: Granite
Depth: 1,000 m

16 Aspé.
Rock Type: Granite
Depth: 450 m

17 Mont Ternr
Rock Type: Clay
Depth: 300 m

18 Grimsel
Rock Type: Granite
Depth: 450 m

19 Yucca Mountian
Rock Type: Volcanic tuff
Depth: 300 m

20 Pinawa
Rock Type: Granite
Depth: 450 m

21 NELSAM
Rock Type: Quartzite
Depth: 3,800 m
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Yucca Mountain in the News

Off-Again?

[NYT, January 29, 2009]

New Panel Will Study Disposal Of Waste

By MATTHEW L. WALD

Published: January 29, 2010 .
fd FACEBOOK

WASHINGTON TWITTER

. . RECOMMEND
The Energy Department plans to announce on Friday the formation

of a "blue ribbon" commission to study the disposal of nuclear waste. = EMAL

SEND TO PHONE
The commission is to be led by Lee H. Hamilton, a former member of = prine
Congress and co-chairman of the Sept. 11 commission, and Brent
Scowecroft, a retired Air Force general and former presidential adviser,
said a staff member of a member of Congress from Nevada.

[@ REPRINTS

SHARE

The Obama administration promised to appoint such a study group almost a year ago,
after announcing that it would cease study of Yucca Mountain, a volcanic structure about
100 miles from Las Vegas that had been chosen by Congress as the leading candidate for
nuclear waste disposal.

The Senate majority leader, Harry Reid, Democrat of Nevada, had made killing the Yucca
Mountain option a priority. Energy Secretary Steven Chu has said that the commission will
not consider Yucca Mountain. Dr. Chu has spoken of alternatives to the burial of nuclear
waste, including new reactors that might reuse some of the waste by turning it into energy,
and the commission will consider those possibilities.

The federal government faces billions of dollars in damages in lawsuits by utilities, because
in the early 1980s it signed contracts agreeing to begin taking the waste in 1998. The
utilities, in exchange, paid the government one-tenth of a cent per kilowatt-hour
produced by the reactors. On Jan. 12, the United States Court of Appeals for the Federal
Circuit ruled against the Energy Department's most recent argument, that it could not be
forced to pay because the delay was unavoidable.

g3.ems.psu.edu
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Yucca Mountain in the News

Or On-Again? Administration Cannot Drop Bid for Nuclear Waste
[NYT, June 29, 2010] Dump in Nevada, Panel Finds

By MATTHEW L. WALD

Published: June 29, 2010

WASHINGTON — In a setback for the Obama administration, a K] FaceBoOK
panel of judges at the Nuclear Regulatory Commission ruled on ] TWITTER
Tuesday that the Energy Department could not withdraw its AECOMMEND
application to open a nuclear waste dump at Yucca Mountain in SION N TO E-
Nevada. MAIL
= PRINT
Making good on a campaign pledge by
NEVADA President Obama, the Energy @ reprnTs
SHARE

Department had formally sought to
N\, AYUCCAMOUNTAIN  grop its plan for Yucca Mountain, a

\'\ volcanic structure about 100 miles CONVICTION
\ . . :
. Las Vegas from Las Vegas. But states with major
N\ ® accumulations of waste from nuclear
N . .
. weapons production had petitioned to prevent the
CALIFORNIA \ department from doing so.

50 miles . \\\} In a 47-page decision, the three-member panel of
e new vore Tmes - administrative judges said the Energy Department lacked
Congress seleciad the Yucca the authority to drop the petition because it would flout a

Mountain location in 1987.
law passed by Congress.
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The New US Plan
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Sub-Surface Energy/Engineering Solutions

Low-Carbon Fuel Solutions?
Unconventional Hydrocarbons
* Gas shales
* Coalbed methane
* Methane hydrates
Carbon Management Solutions?
 Carbon Capture and Sequestration
Zero-Carbon Solutions?
* EGS Geothermal - The new landscape
* Nuclear power
» Hydropower/Pumped storage/CAES
« Wind
* Solar PV and thermal



The Green New Deal
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NEW DEAL

A PROGRESSIVE VISION for ENVIRONMENTAL
SUSTAINABILITY and ECONOMIC STABILITY

A Green New Deal, It's high time
that'we grow America‘s
manufacturing/sector’and fix/our
crumbling infrastructure in/an
evironmentally sustainable way:
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Sustainable Energy in New Zealand
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Sankey Chart for NZ Energy Consumption
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Renewable Energy in NZ
(1000 PJ total)
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Concluding Remarks

Our current predicament is carbon-energy constrained.....

Low-carbon, carbon-neutral and carbon-negative solutions offer a
potential path forward that: /

May mitigate climate change issues
Are an orderly - non-Malthusian solution
For low(er)-carbon fuels (Natural gas) P
Avoids the policy-based "tragedy of the commons"l/%".va:-f.,,.,,_, 3
Industry driven with an appropriate profit mo‘rivekgmwr’i’:’?,%‘f
For others (CCS/EGS/Nuclear/Intermittency Solving) Hlidcy
Significant investment needed (sub-economic)
Government-sponsored R&D/legislated/subisdy-abating
Fascinating science-based problems to solve (IS..)
Your choice for which are Good, Bad or Ugly.... but
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