3. Elementary Fluid Mechanics [4-5]
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4. Reynolds’ Transport Theorem [6]
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5. Conservation Laws [7,8]
Relative velocities: V=W +V_

D D 0 A
Mass (continuity): b=1and — M __=— d¥=— d ¥+ W-nd4A=0
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Moving and steady: '[ (W+V_)pW-ndA= EF

Moment-of-Momentum:

Steady: b= (rxV) and _[ (rxV)pV -ndA = Z(er)
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PUMS(CAL. INTERPLETATION
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3,37

3.37  Water flows from a large tank of depth H, through a
pipe of length L, and strikes the ground as shown in Fig. P3.37.
Viscous effects are negligible. Determine the distance 4 as a
function of 6.

ZL.x

@ FIGURE P3.37

ﬂ+-;-+z, 4.—4_..+z, , Where pefo=0,2=H 2,=Lsin6,

and V, =
Hence, H= — +L sin®
or Y= /2;(//-zsme)' = Same as fuejot (H-22)
Also since from (2) 10(3) fhe only acceleration the particle feels is
that of gravidy, if follows that @ =0, Thus V= Y, =V, cos® (2)

From the Bernovlli egum‘/on between (1) and [3.)
£__+l/3 + 2y =%+/Z§+;‘ 3 W/?Ofc f,‘ﬂ_"’o 0 Z,= #aﬂd23=b

or V, |
H =-5_—;- +h v,

By vsing Egs. (1) and (2) this/gives

[-/'=' K:?S’G +h = 2}(”"2[;1'09) cos*8 +h
Thos,

h= H(I-cu"a) +.L sinf cos*6
or since |-cos*6 =sin*6 | h = Hsin>6 +Lsinb cos®6

Note: 1 If 6=0, then h=0
2) If 6=90°, then h=H
8)If Lsin® >H, then the above is not valid since V, = W
(see £q.1) which is not pessible. Why is this so?
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A stream of water of diameter d = 0.1 m flows steadily from a tank of diameter D = 1.0 m
as shown in Fig. E3.7a. Determine the flowrate, Q, needed from the inflow pipe if the water

depth remains constant, # = 2.0 m.

1.10
Q F;“:’,i El:l’\) \f‘,:? -
= 4 »
g o
N 3 =
| .T‘ 2 10s|-
h -=‘2.0m
| w20 22301005 =
e d/D
= = Vg,’? Enord 5%
d=010m ®) ,;\L,,L/D(.S”z.
(a)
§oLuTioN

For steady, inviscid, incompressible flow the Bernoulli equation applied between points e))

and (2) is L4 /0
Vi + = 5y + bVi+ 94 (1)
With the assumptions that p, = p, = 0,2z, = h, and z;, = 0, Eq. 1 becomes
Wi+ eh = 4v3 2)

Although the water level remains constant (h = constant), there is an average velocity, V|,
across section (1) because of the flow from the tank. From Eq. 3.19 for steady incompressible
flow, conservation of mass requires @, = @,, where O = AV. Thus, AV, = A,V,, or

]
T T |
( ZD2V1 = ‘Zdzvz 1 CoATIOVITY.
Hence,
d 2
v, = (5) V2 (3)
E.qualionsll and 3 can be combined to give
2gh
V, = [—=——
27 1 - @/Dy
Thus, with the given data
2(9.81 m/s?)2.0 m)
V, = = 6.
2 \/ 1 — (0.1m/Im)? 26 m/s
and
Q0 =AY, =AY, = %’ (0.1 m2(6.26 m/s) = 0.0492 m*/s (Ans)

In this example we have not neglected the kinetic energy of the water in the tank (V, #
0). If the tank diameter is large compared to the jet diameter (D > d), Eq. 3 indicates that
V| <€ V, and the assumption that V;, =~ 0 would be reasonable. The error associated with this
assumption can be seen by calculating the ratio of the flowrate assuming V| # 0, denoted Q,
to that assuming V, = 0, denoted Q,. This ratio, written as

Q __ Vv _ Nkl - @Dy _ 1
Q Vip-w V2gh V1 — d/D)*

is plotted in Fig. E3.7b. With 0 < d/D < 0.4 it follows that 1 < Q/Q, < 1.01, and the error
in assuming V, = 0 is less than 1%. Thus, it is often reasonable to assume V, = 0.




3.53

3.53  Oil of specific gravity 0.83 flows in the
pipe shown in Fig. P3.53. If viscous effects are
neglected, what is the flowrate?

wWwRITE BeBANouLL | @ 1 § 2  FIGURE P3.53

/ "'%"’}’3 where 2,2, and V=0

T/ws, L
Vo', bof (n

£=F +&/ =y +¥f MANO MG TR ERUATION) ﬁo—«@) o (&)
and

p,= F(LHh) = dph 4p,  HAmomeTER. ERuaTiw fon (4

Thos,

| £ f=(m-0h ] (2)
Combine Eys (1) and f2) fo oln‘am

K=z =y29(3- )b =1/;3223* (333—(?71 I)M’

or
Y, =2u0 -Ei
Thos,

2 ,
Q =AY, =F(ELt) (2.08) = 0183 fs‘
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A stream of liquid of diameter d drains from a circular tank of diameter D as is shown in
Fig. E3.18. The depth of the water was A, at time ¢t = 0. Determine the water depth as a
function of time, 7 = h(?).

B FIGURE E3.18

§oLuTioN

Clearly this is an unsteady flow—the deeper the water, the faster it flows from the tank.
However, if the hole in the tank is not too big, the water will drain slowly, and the unsteady
effect, 9V/ot, at any point in the flow will be smaller than the steady effect, V dV/ds. Under
these conditions it is reasonable to consider the flow as ‘‘quasisteady’’ and to apply the steady
Bernoulli equation as follows. -

As was shown in Example 3.7, the velocity of the water leaving the tank can be written

| F’(L"IA..- n—m, AL Lne -". (
v = 2gh v e
| NT-@DF | (R

ence, by equating the flowrate frém the tank, V,A,, and the rate at which the amount of
ater in the tank changes with tim¢, — (dh/dn)A,, we obtain

as

v 2
dh _ VyA, _ (d 2gh O
dr A, \D 1 - (/D)

This result can be integrated from the initial time and depth, + = O when # = h,. to an
arbitrary time and depth as follows.

[ Lan- _(1)2 [,
no Vh D 1 — d/D)* Jo
| a\’ 2
Vi - —(4) 2=
2Vh = Vi (D) 1= @/

or

This can be arranged into the form

h [ g/ 2h, ]2
== (2) (Ans)

ho VD/d) - 1

The results of Eq. 2 correlate quite well with experiments, provided d/D is not too
large, even though we have used a steady flow analysis for an unsteady flow. This is another
way of saying 8V/dr < V 9V/as. For larger values of d/D the unsteady Bernoulli equation
gives a nonlinear, second-order differential equation that, unlike Eq. 1, is not easy to integrate.
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[6:3] Control Volumes

Recap
Reynolds' transport theorem = % [ ppa¥+ | pbV-idA for b= 5
cv cs m
Outline
afpd%—i—pr-ndA: 0
%(;ﬂ#) +> pWA=0
Static - Non-deforming Vstatic=W+Vcs
Moving - Non-deforming Vev O W=Vstatic-Ves
Moving - Deforming Ves  Not O
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P

.3 6 in.
2. 9% Vi = Uy,
534  Determine the magnitude and direction \f\/.p\ = Uy
of the x and y components of the anchoring force
required to hold in place the horizontal 180° el-
bow and nozzle combination shown in Fig. P5.34. 12 in.
Also determine the magnitude and direction of g = -y, f

Section (2)

the x and y components of the reaction force
exerted by the 180° elbow and nozzle on the flow- VV.n = -U,’"

ing water. 7\_3
FIGURE P5.34 Py =15psi D, =20 =
> % Vi =5ftls |

~ For determinmg the X and y direchon components of the amloméy
force @ Contro/ volume *that contains the elbow, nozzle and water
between sections (1 Jand (2) is used. Th contr/ volume and the
forces involved are Shown in the sketch above. Applicahon of
the y divection component of the linear momentum equafion

(Eq. 5.22) Jeads o

rC =0
gy =

q . '
@'“)iA Application of the xdirection comporen of- the [incay momentum

\___egquation yiclds "

Conss| of Moseamuy [y — A = _
4 ‘ ulFulAl uzlo“; 2 - fA"‘ iK+I;AL - (I]
From the Comservahon of mass egaa/v'on
= )
(ons |of HAs | m = PUA, = ﬂuzAz] . use o relate ulJoUz.) (2)

Thus &. | may be exprssed as

-PUA, (u,-r uz) = P,A,—f;)x‘*/;ﬁz

and
F = puA(utu)+pA +ph = D, 0]
Ax ~ LY ALY l-) FPA+R z"/oul ;'@:*“z)fﬁ _‘f_' + (O)Az
Alss  frman 51 2
D?
= 1_1_, y, - “,
A U
Thus D_L . .
F ',ou,"l','(uﬁ_p{u,)-rz’?;b;
, 7




A vane on wheels moves with constant velocity V, when a stream of water having a nozzle

EXAMPLE exit velocity of V, is tumed 45° by the vane as indicated in Fig. E5.16a. Note that this is the

5.1 6 same moving vane considered in Section 4.4.6 earlier. Determine the magnitude and direction

* of the force, F, exerted by the stream of water on the vane surface. The speed of the water

jet leaving the nozzle is 100 ft/s and the vane is moving to the right with a constant speed
of 20 ft/s.
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Section (1)
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\— Section (2)
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(b)
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Nozzle exit area normal to
re\lative velocity =18 mm?2

5,67

§.677 Five liters/s of water enters the rotor
shown in Fig. P5.67 along the axis of rotation.
The cross section area of each of the three nozzie
exits normal to the relative velocity is 18 mm’.
How large is the resisting torque required to hold
the rotor stationary? How fast will the rotor spin
steadily if the resisting torque is reduced to zero
and: (a) 6 = 0% (b) 6 = 30°% (c) 6 = 60°?

FIGURE P5.67 ‘

(o)
Hold. The vofor staske V:b\j..‘.)z f
= 5 liters/s

, : o Q
7o determine the forgue reguired o hold dhe vofor stafionary
we use the moment - of - momentum Torgue e5uatiomn (&g.5.50)

o obtain

Tshatr = ”;":w'- G % ¢ “)
We wnote thal

m = x4 (2)
and P

Vs = 3

out 3 Anq;/e ( ’

Cx/t
Combinmg Egs. 1,2 and 3 we get
_ er' cos &
7;/:4# = £ 2t 0
3 A,,,”,e
exit

(Con'f)

So(wtﬁw %

Jo defermine the vofor angular veloaly assoliated with 3ero
shaft torgue we dgain use Phe imoment- of - imomentum tryue

n eguation (€g.5.50) o obfain Yhis time i rofafion R
)/ 7;-/.,;,. = MR (,W“d cos 6, - Uo«f— ) (5)
We note that
Z/d_u_/' = C‘d- w m dmechea U‘f (6)
de _ a Ct?‘CuuFemc.G-.
P ;A_ (7)
neyzle
exit
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