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Introduction 



Introduction 
Ø Finite Element Method (FEM) 
•  A numerical method for solving problems of engineering and mathematical 

physics.  
•   Application area: structural analysis, heat transfer, fluid flow, mass transport , and 

electromagnetic potential. 
•   Cracks can only propagate along the element rather than natural path. 

Ø Extended Finite Element Method (XFEM) 
•  A numerical technique based on the generalized finite element method (GFEM) 

and the partition of unity method (PUM). 
•  Developed in 1999 by Ted and collaborators. 
•  Powerful for discontinuous problems in mechanics, such as: crack growth, 

complex fluid, interface and so on. 
•  Independent of the internal geometry and physical interfaces, such that meshing 

and re-meshing difficulties in discontinuous problems can be overcome. 



Introduction 

Allows simulation of initiation and propagation 
of a crack along an arbitrary path without the 
requirement of remeshing. 

Ø XFEM vs. FEM 



Introduction 

XFEM achieves this by locally enriching the FE approximation with 
local partitions of unity enrichment functions. 

Ø XFEM vs. FEM 

Source: https://www.ethz.ch/content/dam/ethz/special-interest/baug/ibk/structural-mechanics-dam/education/femII/
SBFEM%20FEMII%20lecture%20Adrian%20Egger.pdf�



Introduction 

Ø Conceptual comparison of other methods 

Source: https://www.ethz.ch/content/dam/ethz/special-interest/baug/ibk/structural-mechanics-dam/education/femII/
SBFEM%20FEMII%20lecture%20Adrian%20Egger.pdf�



Introduction 

Ø Scope of application of XFEM 

propagation of a few hundred cracks in a 
brittle material by the extended finite 
element method.  

Source: https://www.youtube.com/watch?v=fuikZx71MhU �



Introduction 

Ø Scope of application of XFEM 

Crack growth problem 

Source: https://www.youtube.com/watch?v=G6lFUN3jwok�



Introduction 

Ø Scope of application of XFEM 

•  Assuming the cohesive zone within the 
propagated hydraulic fracture, three distinct 
zones will contribute in the fracturing stage, 
which are the fully opened zone, partially 
damaged zone and non-damaged zone. 

•  The fully opened zone is the section 
that fully separates the upper and 
lower parts of the crack from the fluid 
flow. The partially damaged zone or 
process zone is located around the 
crack tip where the total stress acts to 
this zone lower than the critical stress 

Source: https://www.ethz.ch/content/dam/ethz/special-interest/baug/ibk/structural-mechanics-dam/education/femII/
SBFEM%20FEMII%20lecture%20Adrian%20Egger.pdf�

Source: https://www.intechopen.com/books/fracture-mechanics-properties-patterns-and-behaviours/
analysis-of-interaction-between-hydraulic-and-natural-fractures 



Introduction 
Ø Advantages of Extended Finite Element Method (XFEM) 
 
•  Ease difficulties in solving problems with localized features that are not 

efficiently resolved by mesh refinement. 
•  Allows simulation of initiation and propagation of a crack along an arbitrary path 

without the requirement of remeshing. 
•  Save computational cost significantly. 
•  Convenient to implement in commercial software and with parallel computing. 
•  The description for the discontinuous field is entirely independent of mesh. 
•  Enriched elements with additional degrees of freedom at crack surface and crack 

tips. 
•  Not only simulate cracks, but also heterogeneous materials with voids and 

inclusions. 



Introduction 

Ø Shortcomings of Extended Finite Element Method (XFEM) 
 

• Useful for linear elastic materials. 

• Time stepping needs to be small enough to capture 
crack propagation. 

• Hard to localize the initial fracture. 



Historical Perspective 



Historical Perspective 
u Belytschko and Black (1999) 
•  In order to solve the problem of the presence of crack, they use the minimal 

remeshing finite element method. 
•  Adding discontinuous enrichment function. 
•  This method allows the crack to be arbitrarily aligned within the mesh. 

u Moës et al. (1999) and Dolbow (1999)  
•  An improvement of a new technique for modelling cracks in the finite element 

framework is presented. 
•  eXtended Finite Element method (XFEM). 
•  This technique allows the entire crack to be represented independently of the 

mesh, and so remeshing is not necessary to model crack growth. 



Historical Perspective 
u Sukumar et al. (2000) 
•  The computational efficiency of algorithm in 2D, which is expected to carry over 

to 3D. 
•   Adding discontinuous enrichment function. 
•  The ability to exactly impose essential boundary conditions on the boundaries of 

convex and non-convex domains. 

u Stolarska et al. (2001) 
•   A new method for level set update is proposed, in the context of crack 

propagation modeling with the extended finite element method (X-FEM) and 
level set. 

u Wagner et al. (2001, 2003) 
•  Apply XFEM to the simulation of particulate flows. 



Historical Perspective 
u Chessa et al. (2003) 
•  Presenting a finite element method for axisymmetric two phase flow problem.  

u Fries et al. (2006) 
•   Improve X-FEM and it is proposed for arbitrary discontinuities, without the need 

for a mesh that aligns with the interfaces, and without introducing additional 
unknowns as in the XFEM. 

u Wagner et al. (2001, 2003) 
•  Apply XFEM to the simulation of particulate flows. 



Historical Perspective 
u Latest Improvement 

• To eliminate the linear dependence and the ill-conditioning issues of 
the standard and the corrected XFEMs;  

• To get rid of extra degree of freedom in crack tip enrichment to 
facilitate optimal mass lumping in dynamic analyses;  

• To be interpolating at enriched nodes to enable direct essential/contact 
boundary treatments. 



XFEM – General Principles 

• X-FEM is a numerical modelling technique that involves 
local enrichment of approximation spaces based on the 
Partitioning Of Unity Concept. 

• The enriched approximation can be written as 

     +    enrichment terms    

• Enrichment terms are added to increase the 
accuracy of the displacement function – u(x) 
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Example of Nodal Enrichment 

• enrichment is done at the nodes where  
discontinuities exist.  

uniform mesh grid where nodes are enriched source: (Chatzi, 2018) 



Enrichment of Approximation Space 

• Enrichment is of two types : –  
Intrinsic Enrichment – basis vector is enriched 

Extrinsic Enrichment – approximation space is enriched  



Intrinsic Enrichment 

• Here, the approximation space is enhanced by 
including new basis functions into the standard 
approximation space to capture the discontinuity. 

• The new basis function becomes 

• Our approximation field is therefore 
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Extrinsic Enrichment 

• Enrichment functions are added to the standard 
approximation. Therefore the enhanced solution field in 
the X-FEM becomes 
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For unit discontinuities 

For multiple  discontinuities 



Enrichment Functions 

• Some functions used for enrichment include but not limited 
to –  

 Level Set Function         –  for modelling weak discontinuities   

 Signed Distance Function –  for modelling weak discontinuities 

 Heaviside Function         –  for modelling strong discontinuities  



Level Set Function (LSF) 

• LSF is a scalar function within a domain whose zero 
level is interpreted as a discontinuity. 

• For a 2D domain with circular discontinuity of radius r 
around (0,0) .  

• The discontinuity defined by level set function is given 
as  ryxyx −+= 22),(φ which is a)  zero on the circle (i.e. discontinuity) 

               b)  negative within the discontinuity 

               c)   positive outside the discontinuity 

 Level Set function (Fries, 2018)  



Signed Distance Function 

The signed distance function ξ(x), is given 

as  

ξ(x) = ||x- xΓ||sign(n.( x- xΓ)) 

 

Which results in a solution where –  

ξ(x) > 0 if x lies on the same side as the 

normal vector, n 

ξ(x) = 0 if x lies on interface, Γ 

ξ(x) < 0 if x lies opposite the direction of n 

 Signed distance function  



Signed Distance Function 

• Weak discontinuities (e.g. difference in strain) results in 
kinks in the displacements (jumps in strains) as for 
example, biomaterial problems as shown  

 Bimaterial Bar (Chatzi, 2018)  



Heaviside Function 

• The Heaviside function, however, is used to model 
strong discontinuities – such as cracks or faults – 
where there is a jump in the displacement field.  

• Heaviside function, H(x), is given as follows –  
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 Cracked bar (Khoei, 2015) 



Crack Tip Enrichment 

•  The crack tip enrichment function (Fα) expressed in polar 
coordinates is given as – 
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Modelling the Crack 

• The displacement field upon encountering a crack is 
equal to the sum of the following individual 
displacement fields 

♣ Classical field 

♣ Crack split 

♣ Crack tip 
Which is mathematically expressed as –  

dxNdxNuxNxu tipHevstd )()()()( ++=



Modelling the Crack 

Standard nodes 

Crack - tip enriched nodes 
 Heaviside enriched nodes 

Crack – tip elements 

Crack body  elements 

Blended elements 

The X-FEM modeling of a cracked body with the Heaviside and crack tip  enrichment 
functions: (a) Quadrilateral mesh; (b) Triangular mesh     (Khoei, 2015) 



Modelling Discontinuities 

  (a) A body with bimaterial interface   (b)A body with bimaterial interface and a crack  (Khoei, 
2015) 



Governing Equation 

Equilibrium Equation 
- ∇∙𝜎+𝑏=0

Boundary Conditions

- Displacement: 𝑢= ​​𝑢 ↓𝑖  on ​Γ↓𝑢  
-  Traction: 𝜎∙ ​𝑛↓Γ = ​𝑡  on ​Γ↓𝑡  
-  Internal or Crack: 𝜎∙ ​𝑛↓Γd = ​𝑡  on ​Γ↓𝑑  

-  ​Γ↓𝑢 : displacement boundary 

-  ​Γ↓𝑡 : traction boundary 

-  ​Γ↓𝑑 : internal boundary 

- 𝜎: stress tensor 

-  b: body force 

-  t: external traction 



Governing Equation 

Conservation of Energy 
-  Conservation of Momentum: ​𝜕​𝑃↓𝑗𝑖 /𝜕​𝑋↓𝑗  + ​𝜌↓0 ​𝑏↓𝑖 = ​𝜌↓0 ​​𝑢 ↓𝑖  
-  Kinematics Equation by Green Strain: ​𝐸↓𝑖𝑗 = ​1/2 (​𝐹↓𝑘𝑖 ∙ ​𝐹↓𝑘𝑗 − ​𝛿↓𝑖𝑗 ) 
Boundary Conditions 
-  ​𝑢↓𝑖 = ​​𝑢 ↓𝑖  on ​​​Γ ↓0 ↑𝑡  
-  ​​𝑛↓𝑗 ↑0 ​𝑃↓𝑗𝑖 = ​​​𝑡 ↓𝑖 ↑0  on ​​​Γ ↓0 ↑𝑡  
-  ​​𝑢 ↓𝑖 (0)= ​𝑢↓𝑖0  
-  ​𝑃↓𝑖𝑗 (0)= ​𝑃↓𝑖𝑗0  



Governing Equation 

Displacement Field 
- 𝑢(𝑋)=∑𝑖↑▒​𝑁↓𝑖 (𝑋)​𝑢↓𝑖  +∑𝑗↑▒Ψ(𝑋) ​𝑎↓𝑗   
-  𝛿𝑢=∑𝑖↑▒​𝑁↓𝑖 (𝑋)​𝛿𝑢↓𝑖  +∑𝑗↑▒Ψ(𝑋)𝛿​𝑎↓𝑗   
 
Weak Form (from Conservation of Momentum) 
- ∫↑▒𝛿​𝑢↓𝑖 (​𝜕​𝑃↓𝑗𝑖 /𝜕​𝑋↓𝑗  + ​𝜌↓0 ​𝑏↓𝑖 − ​𝜌↓0 ​​𝑢 ↓𝑖 ) 𝑑​Ω↓0 =0 
 
Expanding the Derivative of the Product of 1st Term 
- ∫↑▒𝛿​𝑢↓𝑖 ​𝜕​𝑃↓𝑗𝑖 /𝜕​𝑋↓𝑗   𝑑​Ω↓0 =∫↑▒​𝜕/𝜕​𝑋↓𝑗  (𝛿​𝑢↓𝑖 ​𝑃↓𝑗𝑖 ) 𝑑​Ω↓0 
−∫↑▒​𝜕(𝛿​𝑢↓𝑖 )/𝜕​𝑋↓𝑗  ​𝑃↓𝑗𝑖  𝑑​Ω↓0  
- ∫↑▒​𝜕/𝜕​𝑋↓𝑗  (𝛿​𝑢↓𝑖 ​𝑃↓𝑗𝑖 ) 𝑑​Ω↓0 ≅∫↑▒𝛿​𝑢↓𝑖  ​​​𝑡 ↓𝑖 ↑0 𝑑​Γ↓0  



Governing Equation 

Assumptions 
- No contact and friction between crack (discontinuous) 

surfaces

- ∫↑▒(​𝜕(𝛿​𝑢↓𝑖 )/𝜕​𝑋↓𝑗  ​𝑃↓𝑗𝑖 −𝛿​𝑢↓𝑖 ​𝜌↓0 ​𝑏↓𝑖 +𝛿​𝑢↓𝑖 ​𝜌↓0 ​​𝑢 ↓𝑖 ) 𝑑​Ω↓0 
−∫↑▒𝛿​𝑢↓𝑖  ​​​𝑡 ↓𝑖 ↑0 𝑑​Γ↓0 =0 

 
Or More Generally 
-  ​𝑊↓𝑖𝑛𝑡 = ​𝑊↓𝑒𝑥𝑡  
- ∫↑▒​𝑃↓𝑖𝑗 𝛿𝜀 𝑑​Ω↓0 =∫↑▒𝑏𝛿𝑢 𝑑​Ω↓0 +∫↑▒​𝑡 ∙𝛿𝑢 𝑑​Γ↓0  



Governing Equation 

2D Discretization: KU=𝐹 
 

 



Hand Calculation 

1D Bar Example 
 



Hand Calculation 



Hand Calcualtion 



Hand Calcualtion 



Hand Calculation 

(█&​𝑢↓1 �&​𝑢↓2 �&​𝑢↓3 �&​
𝑢↓4 �&​𝑎↓2 �&​𝑎↓3  )=(█0�0� ​
𝑢↓0 � ​𝑢↓0 � ​𝑢↓0 � ​𝑢↓0  ) 

(█&​𝑢↓1 �&​
𝑢↓2 �&​𝑢↓3 �&​
𝑢↓4 �&​𝑢↓5 �&​
𝑢↓6  )=(█0�0
�0� ​𝑢↓0 � ​
𝑢↓0 � ​𝑢↓0  ) 



Numerical Example �

1. Die-Pressing with a Horizontal Material Interface �

pressure�

  Simple Configuration of Die-pressing �
Sketch of Die-Pressing with a Horizontal 
Material Interface (Khoei 2014) �

Lower part: 
Young’s modulus: 2.1 × 106 kg/cm2 

Poisson ratio: 0.35 
�

Upper part:  
Young’s modulus: 2.1 × 105 kg/cm2 

Poisson ratio: 0.35 
 

A free-die pressing with horizontal material interface is restrained at the top of edge. A uniform compaction is 
imposed at the bottom up to 1.3 cm height reduction. �



 Die pressing with horizontal material interface: (a) Example definition; (b) The coarse FEM mesh; (c) The coarse X-FEM mesh. (Khoei 2014) �

Both FEM and X-FEM techniques are employed.  
 
In X-FEM analysis  the interface passes through the elements. Due to the discontinuity in different material properties, 
different enrichment functions (ψ1 and ψ2) are applied.  
 
In FEM analysis, the interface is the boundary of elements. �



 The deformed configuration of die pressing with horizontal material interface: (a) The X-FEM with enrichment function ψ1; (b) The X-FEM with 
enrichment function ψ2; (c) The coarse FEM model. (Khoei 2014) �

From X-FEM and FEM analysis, the deformed configuration of meshes is obtained. When the compaction 
deformation is 1.3 cm, the distribution curves of normal stress σy are along the interface. �



Die pressing with horizontal material interface: A comparison of the normal stress σy  between FEM and X-FEM techniques using the enrichment function. . 
(Khoei 2014) �

(a) The stress distribution along the interface;  
(b) The stress distribution perpendicular to the interface at 
the left-hand side. �



The variation of reaction force with vertical displacement for a die 
pressing with horizontal material interface. (Khoei 2014)�

Comparison of reaction force versus vertical 
displacements between the x-FEM and FEM 
approaches shows that X-FEM can model the 
deformation problems as well as FEM model 
analysis. 
 
Also, X-FEM method can be applied to more 
complicated discontinuity boundary. �



Numerical Example �

2. Die-Pressing with a Rigid Central Core �

pressure�

 Simple Configuration of Die-pressing �
Sketch of Die-Pressing with a Horizontal 
Material Interface (Khoei 2014) �

Inside part: 
Young’s modulus: 2.1 × 106 kg/cm2 

Poisson ratio: 0.35 
�

Outside part:  
Young’s modulus: 2.1 × 105 kg/cm2 

Poisson ratio: 0.35 
 

A free-die pressing with horizontal material interface is restrained at the top of edge. A uniform compaction is 
imposed at the bottom up to 50% volume reduction. �



 Die pressing with a rigid central core: (a) Example definition; (b) The coarse FEM mesh; (c) The coarse X-FEM mesh. (Khoei 2014) �

Both FEM and X-FEM techniques are employed.  
 
Due to the discontinuity in different material properties, different enrichment functions (ψ1 and ψ2) are applied in the 
X-FEM analysis.  
 
In FEM analysis, the interface is the boundary of elements. Mesh size is modified in each calculation step. �



The deformed configuration of die pressing with a rigid core: (a) The X-FEM with enrichment function ψ1; (b) The X-FEM with enrichment 
function ψ2; (c) The coarse FEM model. (Khoei 2014)�

Comparison among (a) The X-FEM with enrichment function, (b) The X-FEM with enrichment 
function and FEM analysis, prediction (b) is closer to FEM result. The enrichment function can be 
modified in order to obtain the optimal result. �



Numerical Example �

3. X-FEM Modeling of large Sliding Contact Problems �

Large slide along a discontinuity: (a) The initial configuration; (b) The 
deformed configuration after sliding. (Khoei 2014) �

The sign of Heaviside function and the direction of 
the unit normal on the contact surface (Γc) decides 
the slave and master segment at each contact point.  
 
Once the sliding begins, the slave points would 
belong to a different master body. A geometric shape 
update function should be applied in X-FEM 
analysis. �



Illustration of the contact interface discretization in a large slide. (Khoei 2014) �

 �The interface of slave segment is divided into several Interface element. The intersection points of master segment 
and slave body are displayed. Assign the integration (slave) point. Calculate the integration of salve point in two 
different reference coordinates: reference coordinate of initial slave elements and coordinate of  reference point 
projected on the master edge.�



The displacement jump can be evaluated as: �

The shape function of the slave-master at the contact surface is expressed 
as: �

Contact interface discretization in a large slide (Khoei 
2014) �

Slave point S comes into contact with the master segment (m1-m2).�

ξ is the reference coordinate of slave point in the initial slave element, and η is the reference coordinate of slave point 
projected on master edge in the initial master element. 
 
​𝑁↑​𝑆↑𝑠𝑡𝑑  and ​𝑁↑​𝑆↑𝑒𝑛𝑟   are the standard and enriched shape functions of slave functions of slave element. ​𝑁↑​
𝑚↑𝑠𝑡𝑑   and ​𝑁↑​𝑚↑𝑒𝑛𝑟   are the standard and enriched shape functions of master element. �



Large slide with horizontal material interface together with the initial X-
FEM meshes. (Khoei 2014) �

 (a) The deformed configuration of X-FEM meshes; (b) The distribution 
of stress contours for various X-FEM meshes. (Khoei 2014) �

Example of large slide with horizontal material 
interface �

The large sliding contact behavior of a 
frictionless problem is investigated for a plate 
with horizontal material interfaces.  
The bottom and top part is constrained. Apply the 
force from left. Horizontal slide would happen. �



Example application 

Evolution of one crack on a aluminum panel. (OneraMNU, 
2011) 
https://youtu.be/toNLY59GMaY �

Another example of crack propagation with X-FEM. (Stephane Brodas, 2013) 
https://youtu.be/fuikZx71MhU �



THANK YOU 


